

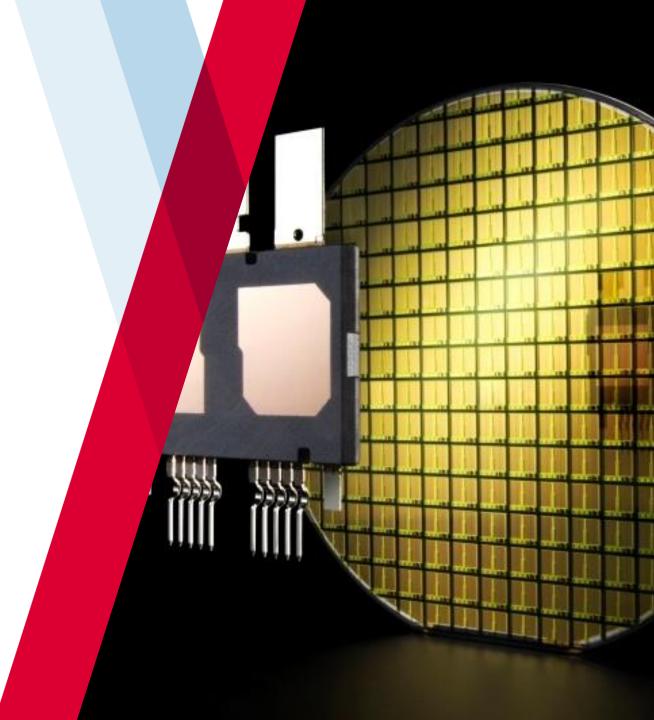
Semiconductor Strategy

June 1, 2022

Yoshifumi Kato

Senior Executive Officer, CTO

DENSO Corporation



Response to the Semiconductor Shortage

DENSO's Response to the current and mid to long term semiconductor shortage

DENSO's response to the semiconductor shortage (1)

Collaboration with suppliers, and Efforts to secure supplies by taking full advantage of the procurement volume of vehicle semiconductors, which is among the highest in the industry

STEP 0	Utilization of risk inventory In operation since 2012 in response to the Great East Japan Earthquake in 2011 Keep the risk inventory in stock at both suppliers (trading companies) and DENSO			
STEP 1	Optimization of allocation of parts Allocate across the global DENSO Group and utilize the pipeline inventory			
STEP 2	Switching to alternative parts Recovery through quick acquisition of certification for alternative parts after the Great East Japan Earthquake and fire at semiconductor plant Study the possibility of using alternative parts for critical model numbers			
STEP 3	Priority production and increase in production capacity Mechanism to put priority on the process and increasing capacity (in-house/addition of foundries)			
STEP 4	Optimization of production priority Change the priority of production for DENSO at suppliers and optimize production			

Promote activities to maintain the supply chain with suppliers to secure supplies.

DENSO's response to the semiconductor shortage (2)

Prevent risks and expedite initial action in an emergency by establishing a structure for cooperation with suppliers and by introducing DX.

Sharing of Future Trends

Long term

Trends of technology and volume over the next ten years

Short term

Fixed order placement

Short-Term to Long-Term Order Placement (three months $\rightarrow \geq$ a year)

	N + 1 years	N + 2 years
2021	Fixed order placement	
2022	Fixed order placement	Unofficial notification

Fire Prevention Measures and Strengthening Earthquake Resistance

Example

Increase inspection items for fire prevention measures based on experience

On-site check of plants at suppliers

Progress in on-site check Systematic

completed

promotion

To be completed in FY2022

Reinforcing Supply Chain and Preventive Management

Identify social changes and visualize issues

Changes in geopolitical risks, etc. (collaboration with external specialized organizations*)

Issues in the supply chain Such as oligopoly (collaboration with suppliers)

Introducing DX to risk inventory management (will start in October 2022)

Centralized internal and external inventory information (visualization)

Expediting initial action

<u>In normal times</u>

Improvement of inventory management level (real-time visualization of volume)

In an emergency

Reduction in lead time to calculate the day on which parts will run out

Greatly strengthen the capability to maintain the supply chain in close cooperation with suppliers.

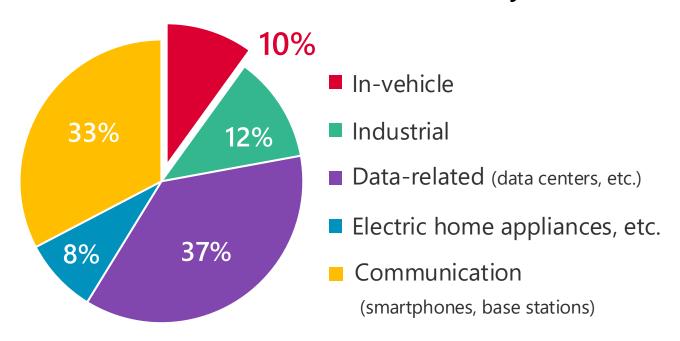
 $[\]hbox{* Government-affiliated agencies, overseas diplomatic bodies, trading companies, financial institutions, etc.}\\$

1

DENSO's Basic Strategy for Semiconductors

DENSO classifies the automotive semiconductor into three areas and formulates strategies for each area, taking into account the technology used, the industries driving that technology, and the companies driving mass production, etc.

Vehicles and Semiconductors in the Era of CASE


3. Evolution of 2. Expansion of 1. Changes in the **Electronics Platform** Electrification **Driver Assistance** Millimeter **Battery** Single ECU Integrate ECU **Power Control Unit Vision Sensor Monitoring ECU** wave radar Microcomputer **Power & Analog** Sensor & System on Chip (SoC)

Semiconductors are the key to achieving these solutions.

Position of in-Vehicle Products in the Semiconductor Market

Semiconductor Market in 2020: 53 trillion yen

160 **Automotive Ratio** 140 in Semiconductor 120 9~10% 100 Wireless 80 Communication 60 In-vehicle Computer/ Non-vehicle 2010 2020 2025 2030 2035

Source: Omdia & in-house survey

Source: Omdia & in-house survey

As the semiconductor market expands, automotive semiconductors will continue to increase.

Strategy formation and collaboration between the automotive and semiconductor industries are essential for the advancement and stable procurement of in-vehicle semiconductors.

Basic Strategy of DENSO's Semiconductor Business

Develop novel and rugged in-vehicle semiconductors while taking full advantage of existing semiconductors, depending on fields.

Microcomputer & SoC

- Division of labor into specifications, design and manufacture
- Require upstream strategic collaboration

Microcomputer vendor SoC vendor

TSMC UMC

Develop and present specification with strategy and maintain stable procurement

Power & Analog

- Require performance which fits invehicle environment
- Automotive industry drives technology

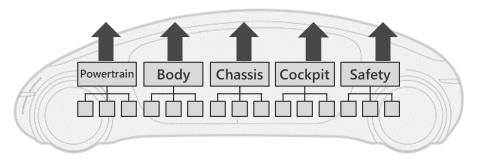
In-house manufacture semiconductors that differentiate from competitors

Sensor

- Utilize non-automotive technologies
- Collaborate with automotive sensor semiconductor vendor

Collaborate with strategic partners

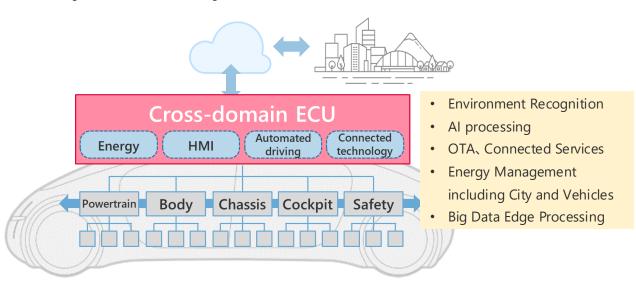
Microcomputer & SoC


Performance improvement, function development and establishment of a stable procurement network

Changes in the Electronics Platform and Impact on in-Vehicle Semiconductors

Past

Evolution of each single domain



Logic semiconductor: Microcomputer

Application: Actuator control

Future

Cross-domain function development is key as mobility evolves such as CASE

Advanced actuator control ⇒ Microcomputer

Al, Image Processing, OTA, Cloud Cooperation, etc. ⇒ SoC

Microcontroller performance for control will be improved and SoC will be responsible for cross-domain function development.

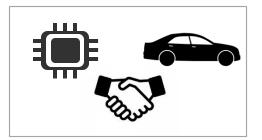
DENSO's Vision

Promote two activities to secure stable procurement of advanced logic semiconductors

Promoting development and standardization and deepening the cooperation with specialized manufacturers


Present strategic specifications and promote standardization

Have several sites to produce with standard manufacturing process and strengthen BCP



Activities to maintain the supply chain

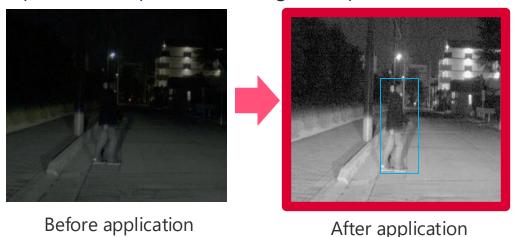
Short to Medium Term

Take advantage of the procurement volume (Transport, alternative parts, and change)

long term

Optimize the gap between automotive and the semiconductor industry

Promote optimization of semiconductor procurement structure



Efforts (1) Promote development and standardization and deepen the cooperation with specialized manufacturers

DENSO's strength

Present strategic specification for automotive

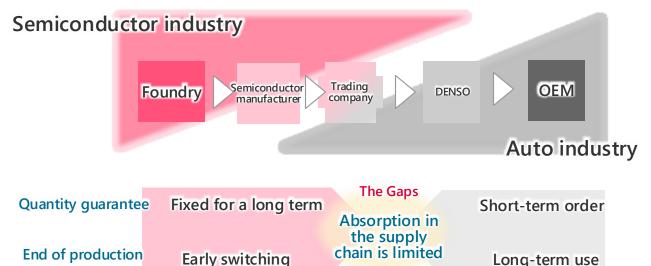
Development to improve the recognition performance at night

Artificial intelligence IP of SoC for image recognition systems

Jointly develop driver assistance SoC with semiconductor vendors

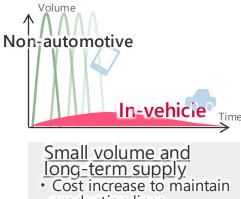
Prepare for production of 28nm microcomputers in Japan

*JASM: \underline{J} apan \underline{A} dvanced \underline{S} emiconductor \underline{M} anufacturing


Taking a minority stake in JASM (announced in February 2022)

Efforts (2) Reform the semiconductor procurement structure

Make proposals by taking advantage of experience and volume of semiconductor procurement


Gaps between industries (examples)

Key points in reforming the procurement structure

- Share the medium- to long-term trends across the supply chain
- Mechanism for industry standardization by taking advantage of the total volume
- Switch earlier based on market trends

Example: Product life cycle

- production lines
- Response to discontinuation of old models

Leveraging DESNO's strengths to reform the procurement structure

Power & Analog

The differentiation area driven by automobiles, materials, design, and manufacturing processes are insourced, semiconductors are also manufactured in-house.

History of in-House Manufactory of Semiconductors at DENSO

Expansion of wafer production facilities

DENSO established 1949 1967 IC Research Center established

Head office wafer plant 1975 Kota wafer plant 1991 lwate wafer plant 2012

(transferred from Fujitsu Semiconductor)

2020 Hirose wafer plant

(transferred from Toyota Motor Corporation)

collaboration with USJC

Global History of Semiconductor Development

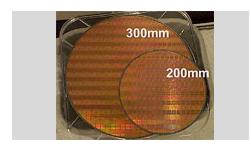
An electronic calculator (TI) developed 1968 Intel Corporation established World's first CMOS IC (RCA)

The development of ICs accelerated globally in the 1960s.

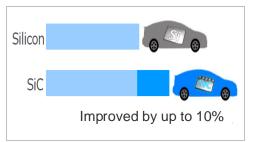
Increase Production Capacity

through M&A and Collaboration

Equivalent to sales of DENSO's in-house manufactured semiconductors*: 420 billion yen (2021) *Part of in-house manufacturing power semiconductor, ASIC and sensor

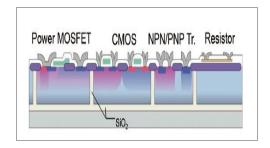

DENSO's CAPEX in semiconductors: 160 billion yen (total for past three years)

DENSO has produced in-vehicle semiconductors for nearly 50 years

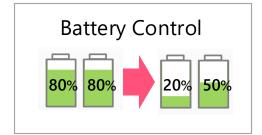

DENSO's Vision

Develop and Manufacture in-House "Devices & Wafers" and "Manufacturing Processes" to Maximize System Competitiveness

Power: Devices & Wafers


Production of Large-Diameter Silicon Wafers with Strategic Partners

Full-Scale Launch of Silicon Carbide, which is Advantageous for BEVs

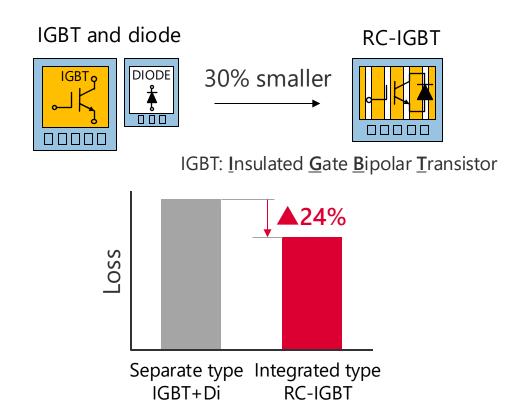


Analog: Manufacturing Processes

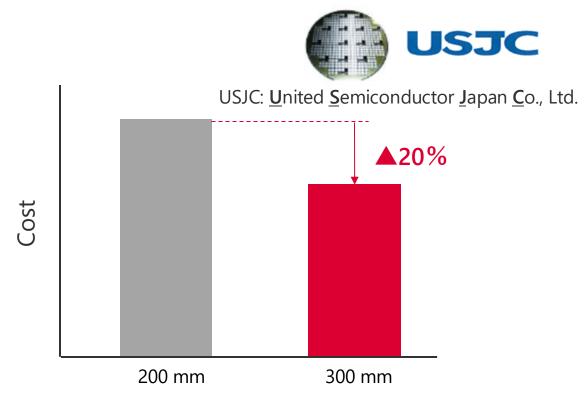
SOI-BCD Process Attains the Performance Required for the in-Vehicle Environment

BCD: $\underline{\textbf{B}}$ ipolar- $\underline{\textbf{C}}$ MOS- $\underline{\textbf{D}}$ MOS

Design Capabilities to Anticipate and Meet System Needs


ASIC: Application Specific IC

Efforts (1) Improve Cost Competitiveness of Silicon Power Semiconductors

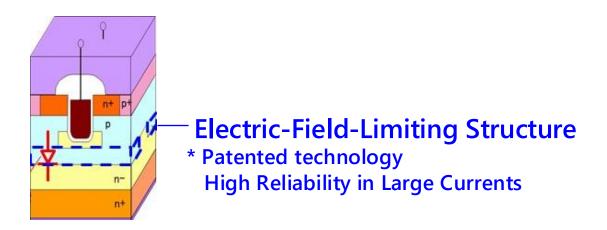

DENSO's strength

Reduce the Loss by Integration

Compact and low-loss device structure

Large-Diameter Wafers (300 mm)

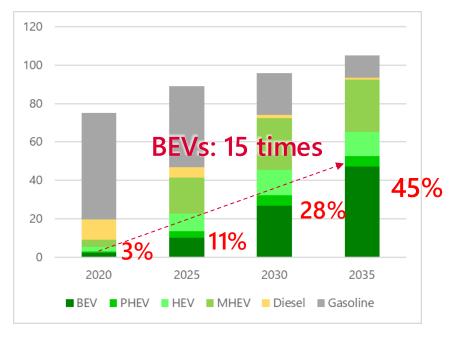
Agreed to cooperate in production with USJC (Announced in April 2022)



Efforts (2) Improvement of Performance of SiC Power Semiconductors

DENSO's strength

Achieving both high-voltage resistance and low on-resistance


<u>Using electric-field-limiting trench MOS</u>

Device structure with high-voltage resistance and low on-Resistance

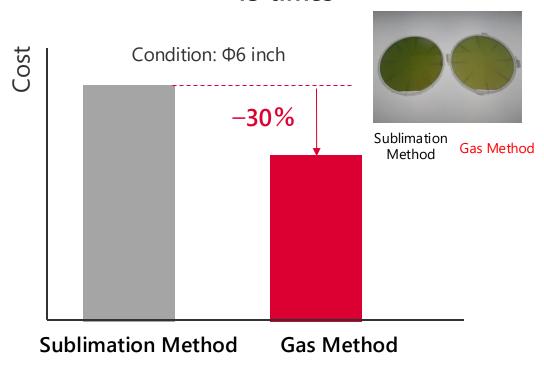
Forecast for global car sales

Unit: million cars

Source: BCG analysis (April 2021)

Widespread use of silicon carbide due to rapid expansion of BEVs

Efforts (3) Improvement of Cost Competitiveness of Silicon Carbide Power Semiconductors


DENSO's strength

"Manufacturing capabilities" to fabricate equipment in-house

RAF Method Gas Method Sublimation Method c-plane Screw SiC single crystal dislocation Seed a-plane RAF: Repeated A-Face 0.2 mm/h 15 times 3 mm/h **Growth Speed**

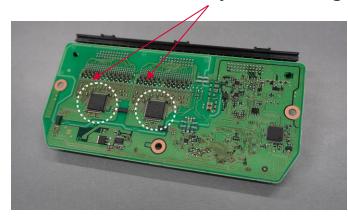
Achieving of high-quality and inexpensive SiC wafers

Increasing the wafer growth speed 15 times

CO₂ emissions during manufacture reduced by 90%

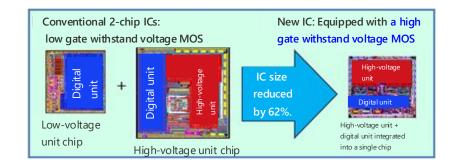
Target cost: ▲30% from current level

Efforts (4) Strategic ASIC development


DENSO's strength

150V high-voltage resistant process

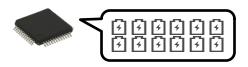
World's first


Achieving both high-accuracy detection and monitoring of many cells

Lithium-ion battery monitoring IC

- Battery voltage detection accuracy: ±3 mV or less
- Number of battery cells that can be monitored is 25 cells/IC

Anticipate and meet the need for battery control



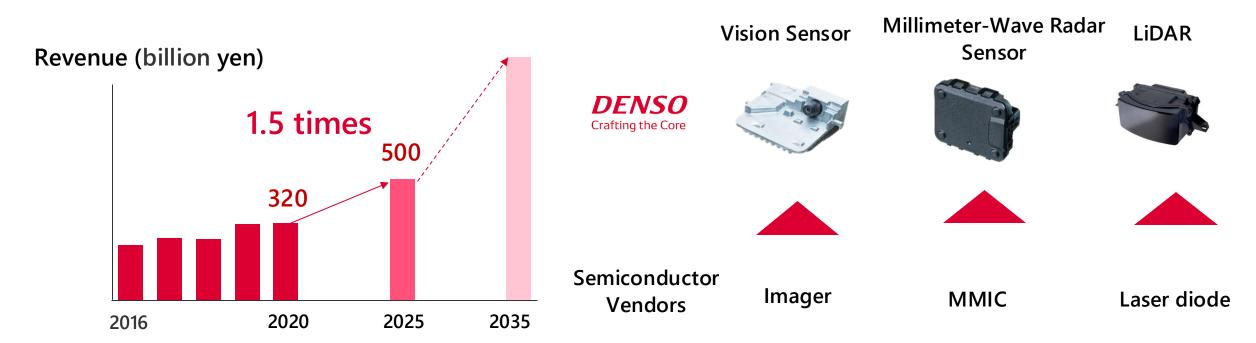
Competitor's product

DENSO's product

Monitoring of 12 cells

Monitoring of 25 cells

The number of battery cells monitored is double that of a competitor's product.


Sensor

ADAS and AD etc. sensors work with strategic partners who are willing to work with in-vehicle

Sensor Semiconductors for Safety System Products

Expand safety system products through competitive strategic partnerships.

DENSO's Vision

Strengthen the "judgment capabilities" for current situation and "realization capabilities" for the future to achieve competitive strategic partnerships.

Judgment Capabilities

Anticipate rapidly changing technology trends

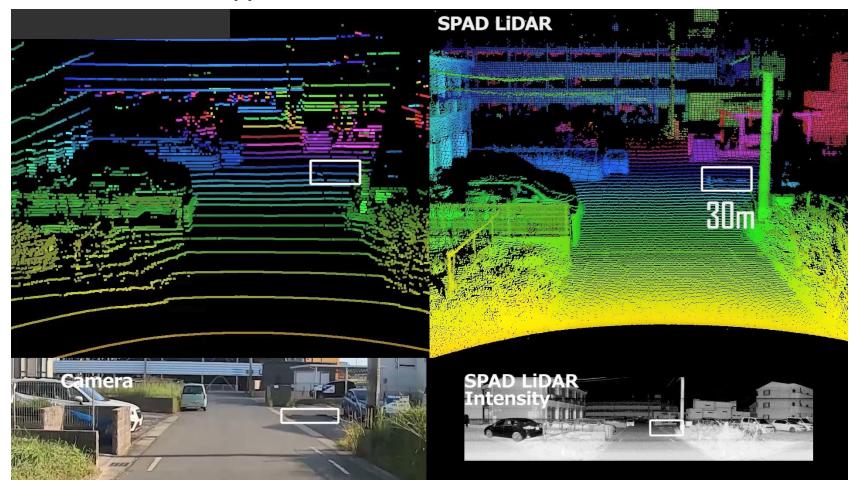
Disseminate in-vehicle trend to strategic partners

Strategic partnerships

Realization Capabilities

Plan novel semiconductors in the era of CASE

Develop structure to achieve the vision


Development of sensors for autonomous driving

Efforts (1) Development of SPAD LiDAR for Autonomous Driving

Another Supplier

DENSO's Goals

Semiconductors

Maximize system competitiveness using rugged in-vehicle semiconductors through collaboration with strategic partners.

	Goal	Basic Strategy (Business Policy)	Attainment Level at Present	Target for 2025
1. Microcomputer & SoC	Promoting development and standardization, deepening the cooperation with specialized manufacturers and working on maintain the supply chain to secure stable procurement	Establishment of a stable procurement network (1) Utilize standard products and manufacturing processes (2) Reform the semiconductor procurement structure	Equity participation in partners of design and manufacture has been completed.	Bridging the gap between the automotive and semiconductor industries, promoting standardization and strengthening the supply chain
2. Power & Analog	Develop and Manufacture in- House "Devices & Wafers" and "Manufacturing Processes" to Maximize System Competitiveness	In-House Manufacture Semiconductors that Differentiate from Competitors (1) Strengthen competitiveness of high voltage power semiconductors (2) Strategic ASIC development	Revenues of 420 billion yen, equivalent to sales, for in-house manufacturing semiconductor*	Revenues of 500 billion yen, equivalent to sales, for in-house manufacturing semiconductor
3. Sensor	Strengthen the judgment capabilities for current situation and realization capabilities for the future to achieve competitive strategic partnerships	Collaboration with strategic partners (1) Collaborate with competitive partners (2) Develop sensors for automated driving	Mass production of Global Safety Package 3	Developing compact & high performance environmental recognition sensor for advanced driver assistance of Lv3 or higher

*Part of in-house manufacturing power semiconductor, ASIC and sensor

Resolve social issues in "green" and "peace of mind" by offering rugged in-vehicle semiconductors.

DENSO Crafting the Core