DENSO Integrated Report 2025 資本戦略

気候変動の危機が迫る中、デンソーでは、持続可能な社会のあり方を模索し、2030年長期方針で掲げた、「環境」の提供価値を最大化する目標に向けてサステナビリティ経営を加速させています。2019年に「気候関連財務情報開示タスクフォース (TCFD)」への賛同を表明し、気候変動が事業に与える影響とそれによる機会とリスクをシナリオに基づいて分析、事業戦略へ反映しています。ここでは、TCFD提言に沿って、取り組み状況をご説明します。

シナリオに基づく事業の機会とリスクの分析

気候変動が事業に及ぼす影響の把握と気候関連の機会とリスクを具体化するために、国際エネルギー機関(IEA)や気候変動に関する政府間パネル(IPCC)の外部シナリオをベンチマークとして参照しました。また、自動車産業のシナリオ分析を確認しつつ、自社の中長期戦略における事業環境認識と照合しながら総合的にシナリオを想定し、シナリオと自社中長期戦略との差異分析により気候関連の機会とリスクを抽出しました。

シナリオの想定

移行リスクはIEA「World Energy Outlook」のシナリオ「SDS」「NZE」をそれぞれ推進的・野心的シナリオと定義し、範囲は2040年までのCO₂排出量、炭素税、原油価格、再エネ率、新車電動車率を定量化し、自社戦略との差から機会とリスクを分析しました。また物理的リスクでは、IPCC第6次報告書のシナリオ「SSP5-8.5」「SSP2-4.5」をそれぞれ鈍化・推進シナリオと定義し、気象災害、海面上昇、生態システム悪化、水食糧不足などを定性化し、自社戦略との差から機会とリスクを分析しました。

気候関連の機会とリスクの分析

デンソーの中長期戦略の前提となる事業環境認識と上記シナリオの差異分析を行い、事業に与える影響が100億円以上の重要項目を機会・リスクに層別して抽出しました。これらの機会・リスクへの対応を、事業戦略や財務戦略に反映することで、「社会課題の解決」と「デンソー企業価値向上」の両立を目指します。主な機会とリスクは下記の通りです。

主な機会

重要項目	時間軸/影響	主要な財務上の潜在的影響	財務影響 (2025年度)	対応策	対応費用 (2024年度)
研究開発および 技術革新を通じた 新製品やサービス の開発	中期/ 高い	電動車の需要増加に起因する売上収益増加 インバータやサーマルの電動関連製品のほか、ヒートポンプシステムなど電動車の熱効率改善技術の需要拡大	+2,000億円	・省動力技術、小型化高出力技術などの電動化 関連技術や、熱マネジメント技術の開発を加速 ・新燃料 (e-fuel、水素など) に対応するエンジン 制御システムなどの技術開発も推進	1,000億円
事業活動の多様化	長期/中程度	脱炭素に資する技術需要増加に伴う売上収益増加 車載領域で培った環境技術を応用し、食農・FAや水素ビジネス(SOEC*1、SOFC*2)など、非車載領域での事業機会を 創出	食農・FA・ エネルギービジネス +3,000億円 (2030年度)	・センサ・制御・ロボットなどの技術を活用した農業生産技術や、排ガス浄化技術・熱マネジメント技術を活かしたエネルギー利用技術などを創出・アライアンスの積極的な活用	190億円
より効率的な 生産および物流 プロセスの活用	中期/ やや高い	全世界の工場の省エネ推進によるエネルギーコスト低減 生産プロセスの効率化を進め、エコビジョン2025の「エネルギー使用量を原単位で2012年度比半減」を達成した場合、年間約165万tのCO ₂ とエネルギーコストを削減	+920億円	徹底した省エネ活動の継続と、低炭素な材料・設備・生産工程の採用、Factory-loTの導入でさらなる生産プロセスの効率化や省エネ生産技術開発の促進	100億円

- *1 SOEC : Solid Oxide Electrolysis Cell 固体酸化物形水電解用セル
- *2 SOFC: Solid Oxide Fuel Cell 固体酸化物形燃料電池

主なリスク

重要項目	時間軸/影響	主要な財務上の潜在的影響	財務影響 (2025年度)	対応策	対応費用 (2024年度)
<移行リスク> 既存の製品および サービスに対する 新たな命令・規制	長期/ やや高い	燃費・排ガス規制厳格化加速を背景とした売上収益減少 燃費規制の厳格化や電動化(HEVを含む)の加速(2030 年:47%)を想定。変化に対応できず、規制不適合により 販売数減少	-3,000億円	・航続距離延伸への電動化製品の省エネ技術開発を加速 ・新燃費規制に向け、HEVなどの内燃機関の燃費向上に向けた開発を加速	800億円
<物理的リスク> サイクロンや洪水などの 異常気象の深刻化と 頻度の上昇	長期/ やや高い	工場操業停止・サブライチェーン分断による売上収益減少 異常気象発生の可能性が高い日本・アジア(全生産の 65%)において、自社工場の被災やサブライチェーン分断 による操業停止で売上収益減少	-1,200億円	・建物などへの災害対策実施、部材購入先の複数社化などのサプライチェーンのリスクマネジメント強化 ・世界の工場をIT・IoT技術でつなぎ、生産変更への即時対応可能なグローバル生産体制構築	47億円
<移行リスク> カーボンプライシング メカニズム	中期/ 高い	カーボンブライシング導入加速に伴うコスト競争力低下 世界の炭素税や排出量取引制度などの拡大・厳格化です べての車載用製品に炭素コストが付加	-120億円	製造における再生可能エネルギーへの戦略的かつ段階的な切り替え省エネや生産プロセスの効率化の活動継続	22億円

経営戦略への影響

シナリオ分析結果、特にカーボンニュートラルの動きはデンソーの製品開発と生産に大きな影響を与えることが分かりました。 そのような状況を踏まえ、環境目標を野心的な「カーボンニュートラル」へと引き上げ、デンソーの経営戦略に反映しました。

具体的には、モノづくり(生産)では、「2025年度には電力のカーボンニュートラル(ガスはクレジット活用)・2035年度にはガスも含めたモノづくりにおける完全なカーボンニュートラル」を設定。デンソーが得意とする省エネ活動の継続・強化に加え、質がよく経済的にも最適な再生可能エネルギー由来電力の導入やクレジット活用などの取り組みを進めています。また、省エネや再生可能エネルギーなどCO₂排出量削減に寄与する投資の加速に向けて、投資判断にインターナル・カーボンプライシング(ICP)を導入しています。

モビリティ製品では、電動化技術の開発推進で可能な限り CO2排出量を削減するとともに、水素を使ってグリーンエネルギーをつくる技術などの技術開発でCO2をマイナスにすることで、社会全体のカーボンニュートラルを目指します。なお、環境への貢献と事業成長を両立させるために、収益性・成長性に加えCO2排出量/削減量も評価軸に据えて、事業ポートフォリオの入れ替えを定期的に議論・推進していきます。

以上の取り組みによりレジリエントな事業戦略を維持していると考えています。

財務計画への影響

カーボンニュートラルを背景に、電動化技術開発の加速や水素燃料、バイオ燃料などの新燃料に対応した製品へのシフトが必要です。また、モノづくりにおけるカーボンニュートラルに向けた、再生可能エネルギー由来電力の調達費用やCO2オフセットの証書、クレジットの購入も必要となります。したがって、財務計画には、電動化や新燃料対応などへの研究開発費の増加や再生可能エネルギーなどの導入関連費用を反映しています。

また、気候変動の物理的リスクへの対策費用(建物・構造物への防災対策など)も、建物などの新築時、あるいは建築経過年数などを踏まえて、計画的に財務計画に織り込んでいます。

ガバナンス

デンソーでは、短・中・長期の環境目標や、シナリオ分析結果を含む環境全般に関する課題と活動の進捗状況の共有、対応策の指示など、デンソーグループ全体の環境活動推進に関して責任を負う会議体として、全社安全衛生環境委員会を設置しています。同委員会は取締役副社長が委員長を、安全衛生環境部が事務局を務め、年2回開催されます。

特に気候変動については、デンソーグループのマテリアリティの一つとして設定しており、全社安全衛生環境委員会が審議・ 策定した目標・指標案や活動計画案をサステナビリティ会議および経営審議会にて審議し、最終的に取締役会が承認し決定します。また、目標の達成状況のモニタリングについても、全社安全衛生環境委員会のほか、サステナビリティ会議、経営審議会および取締役会が行っています。

リスク管理

変化が激しい事業環境の中、デンソーでは多様化するリスクを常に能動的に把握し、被害の最小化と事業継続の両面からリスク管理を行っています。気候変動リスクについては、サステナビリティ会議が毎年1回、マテリアリティを見直し、全社安全衛生環境委員会が、サステナビリティ会議と連携してリスク・機会を含めた見直しを行い、重要項目の把握と対応を明確化しています。

なお、気候変動リスク(物理的リスク)は、リスクマネジメント会議が特にリソーセスを投入して対策を推進する重点リスクの一つとして選定されており、全社リスク管理の観点からもグループ全体でリスク対応を強化しています(リスクマネジメント TR98-99)。

「エコビジョン2025」の詳細については、こちらをご覧ください。 https://www.denso.com/jp/ja/about-us/sustainability/envi-ronment/ecovision/

6

指標および目標

デンソーでは、目標については、中期方針で指標・目標を明確化するとともに、優先取組課題(マテリアリティ)に関するサステナビリティ目標の一つとして会社経営目標に落とし込んでいます。前述の全社安全衛生環境委員会だけでなく、サステナビリティ会議で進捗状況をフォローアップし、経営審議会および取締役会に報告しています。

なお、指標および目標はデンソーグループ全体に効果的にアプローチするため、連結子会社の排出量100%を対象とする、経営支配力アプローチに従って算定しています。

各指標・目標の達成に向けたロードマップについては、「環境 戦略」(IIIP34)をご参照ください。

気候変動(CO₂排出量削減)に関する目標(基準年: 2020年度)

部品調達	2030年度	25%削減(WB2℃*相当)	
Scope3 (上流)	2050年度	カーボンニュートラル	
モノづくり	2025年度	カーボンニュートラル	
Scope1·2	2035年度	カーボンニュートラル (クレジットなし)	
製品使用	2030年度	25%削減(WB2℃*相当)	
Scope3 (下流)	2030年及	23 7003 #% (WDZ C 103)	

^{*} WB2℃: "Well Below2℃"の略。 気温上昇を2℃より十分低く抑える目標であり、1.5℃ 基準におけるScope3の目標

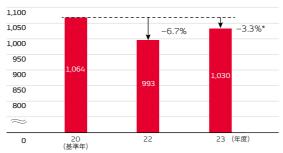
Scope3(上流) サプライチェーンにおけるCO2排出量削減

_{目指す姿} デンソーとサプライヤーとの協働によりカーボンニュートラルを実現

カーボンニュートラルに向けた課題は業種・サプライヤーごとに異なるため、サプライヤーとの対話を通じ、相互理解のもと、サプライヤーと共に活動を進めています。

具体的には、調達金額の70%超を占める主要サプライヤー約300社に排出量を調査した上で、サプライヤーと中期目標「CO₂排

出量を2030年度までに2020年度比25%(=2.5%/年)削減」、長期目標「2050年度にカーボンニュートラル実現」を共有し、活動の推進をお願いしています。そして、デンソーの省エネの進め方や事例をご覧いただけるショールームの常設、省エネ診断やエネルギー計測器の貸し出しなどの支援、工場の改善事例を現認していただくカーボンニュートラル工場見学会の開催などにより、サプライヤーの省エネを促進しています。さらには、活動を通じて得たサプライヤーの困りごとや要望を取りまとめ、業界団体などへ提言することで、サプライチェーン全体の活動環境の整備を牽引していきます。


カーボンニュートラル工場見学会

これまでの実績

サプライヤーでの省エネ活動や再生可能エネルギーの導入により削減活動を進めましたが、デンソーからサプライヤーへの発注数量の増加が要因となり、2023年度は2020年度比-7.5%の目標に対し、-3.3%となりました。

目標達成を目指して削減活動を進めるべく、サプライヤーへの支援を強化するとともに、2025年度以降に製品への低CO2材料の採用やサプライチェーンへの再生可能エネルギーの導入を加速させていきます。また、製品のCO2排出量削減価値をお客様や社会に付加価値として提供できるよう、業界ルールの策定に貢献していきます。

CO2排出量 (2024年度実績は2025年末頃ホームページで公表予定) (万t-CO:e)

^{* 2023}年度のCO:排出量(総量)は増加しましたが、CO:排出量原単位(調達金 額当たりのCO:排出量)では低下

Scope1・2 モノづくりにおけるカーボンニュートラル

目指す姿 工場における完全なカーボンニュートラルを達成

製造工程のさらなる効率化によりエネルギー使用量を減らしてCO₂排出量を減少させていくことや、太陽光などの再生可能エネルギーの利用、さらには、再生可能エネルギーを使って生成したグリーン水素の利活用によって、生産の過程で発生するCO₂を削減し、モノづくりにおけるカーボンニュートラルを目指します。

これまでの実績

従来の強みである省エネ活動を徹底的にやり切り、再生可能エネルギーの導入やクレジットの活用などにより、CO₂排出量を2020年度比で76%削減し、2024年度目標を達成しました。

なお、2024年度までに、日本では、(株) デンソーの本社と全生産拠点(11拠点)・先端研究所、株式会社デンソー福島、株式会社デンソー北海道、株式会社デンソー岩手、株式会社デンソー九州が、また海外では、欧州(16拠点)・中国(13拠点)・アジア(10拠点)の全生産会社(孫会社を除く)で、カーボンニュートラルを達成しています。

CO2排出量 (万t-CO2e) 200 192 -11% → -26% -50% -76% 100 96 20 21 22 23 24 (年度)

※ 実績はクレジットを反映した値 対象は国内外生産拠点(グループの生産会社各社を含む) 2020年度実績は新型コロナウイルス感染症による減産影響を補正

Scope3(下流) モビリティ製品におけるカーボンニュートラル

目指す姿 クルマの電動化に貢献し、CO₂を可能な限り削減

HEV・BEV・FCEVなどの電動車の普及を支える製品・システムの開発を通して、クルマ使用時のCO2排出量削減に貢献します。 また、自動車業界で培った電動化技術を空のモビリティにも応用し、CO2排出量削減への貢献に向けて取り組んでいきます。

エネルギー利用におけるCO2排出量削減

目指す姿 再生可能エネルギーを有効活用する技術を開発・普及し、エネルギー循環社会を実現

場所や時間の制約なく、エネルギーを高効率に利活用する技術を確立し、世の中に広く普及させることで、エネルギー循環社会の実現に貢献します。

例えば、クルマで培ってきた熱マネジメント技術と材料技術を応用して、水素から電気をつくるSOFCと、電気から水素をつくる SOECの実証実験を開始しました。今後様々な実証を通じて、グリーン水素エネルギーをムダなく使う「効率性」と、システムを安全 に長期間使用できる「耐久性」を探求し、環境と経済合理性の両立を目指した開発に挑戦していきます。

国際的な削減目標認定

2030年度までの温室効果ガス排出量の削減目標を策定し、これらの目標が、パリ協定が求める「世界の気温上昇を産業革命前より1.5℃に抑えることを目指す」ための科学的な根拠に基づくものであるとして、国際的イニシアティブ「SBTi*(Science-Based Targets Initiative)」によるSBT認定を取得しました。

* SBTi: WWF、CDP、世界資源研究所(WRI)、国連グローバル・コンパクトにより設立された共同イニシアティブ。企業が具体的にどれだけの量の温室効果ガスの排出をいつまでに削減しなければならないのか、科学的知見に基づいて目標を立てられるようなガイダンスを作成。科学的知見と整合した目標(SBT: Science-Based Targets)に適合していると認められる企業に対して、SBT認定を付与

今後も十分な検討を重ね、重要項目の財務上の定量的な影響や、事業への具体的な機会・リスクについてより精緻に分析し、事業 戦略や行動計画への反映を進めていきます。

67