Reconsideration of adiabatic theorem toward efficient quantum annealing

DENSO CORP. ${ }^{\text {A }}$, WIAS, Waseda Univ. ${ }^{\text {B }}$, GSIS, Tohoku Univ. ${ }^{\text {C }}$ Shuntaro Okada ${ }^{A, C}$, Shu Tanaka ${ }^{B}$, Masayuki Ohzeki ${ }^{\text {C }}$, Masayoshi Terabe ${ }^{A}$, Shinichiro Taguchi ${ }^{\text {A }}$

1. Digest

Focusing only on the energy gap is not enough for speedup of the quantum annealing

2. Preceding researches

Adjust the evolution rate based on the energy gap
(

Roland et al., Phys. Rev. A, 65, 042308 (2002)

Avoid first-order phase transition to expand the energy gap

Most of the preceding studies focused only on the energy gap

4. Result 1/2

The relationship between energy gap and excitation

- Problem setting

Partition of 10 numbers
$7.1,2.5,8.6,6.9,0.2$
$3.5,3.7,9.8,2.4,4.1$

- Hamiltonian of QA
$H(t)=\frac{t}{\mathrm{~T}} \hat{H}_{0}+\left(1-\frac{t}{\mathrm{~T}}\right) \hat{H}_{q}$
linearly decreased T is set to 100
$\hat{H}_{0}=\sum_{i=1}^{N} \sum_{j>i}^{N} 2 n_{i} n_{j} \hat{\sigma}_{i}^{z} \hat{\sigma}_{j}^{2}$ $+\sum_{i=1}^{N} 2 n n_{10} \hat{\sigma}_{i}^{z}$
$\hat{H}_{q}=-\sum_{i=1}^{N} \hat{\sigma}_{a}^{x}$

Excitation cannot be explained by focusing only on the energy gap

3. Purpose of this study

Adiabatic Theorem
The condition to obtain the ground state definitely

$$
\left.\left|\frac{1}{\left[\varepsilon_{j}(t)-\varepsilon_{0}(t)\right]^{2}}\langle j(t)| \frac{d \hat{H}(t)}{d t}\right| 0(t)\right\rangle \mid \ll 1
$$

Transition probability
We confirmed the contribution of eigenstate to the transition probability

5. Result 2/2

Contribution of eigenstate to transition probability

The above cannot be explained by only the energy gap

$$
\sum_{j=1}^{2^{N}-1}\left|\frac{\langle j(t)| \frac{d \hat{H}(t)}{d t}|0(t)\rangle}{\left[\varepsilon(t)-\varepsilon_{0}(t)\right]^{2}}\right|
$$

Sum over all the excited states

t/T

t/T

6. Future plan

Explore how to estimate eigenstates in large-scaled problem and realize speedup based on eigenstates

