Fast algorithm to embed bigger subproblem to D-Wave machine

DENSO CORP.^A, GSIS, Tohoku Univ.^B, Waseda Univ.^C Shuntaro Okada^{A,B}, Masayuki Ohzeki^B, Shu Takana^C, Masayoshi Terabe^A, Shinichiro Taguchi^A

1. Digest

Embedding algorithm to obtain high accurate solution for large problem is proposed

2. Conventional method 1. qbsolv 2. heuristic embedding Grid graph to D-Wave2000Q Iterative solver for large problem Extract subproblem optimization embed 100 ģ subproblen 100 150 200 250 300 Grid graph size Computational time is too long Complete graph embedding is used ⇒ size of subproblem become small to use for iterative solver

We expect fast algorithm to embed bigger subproblem improves the solution accuracy

Select part of variables which can be easily embedded Large problem Extract&Embed subproblem to chimera Conventional method > subproblem is embedded after subproblem is extracted Extract subproblem Embed all variables

Extracting and embedding subproblem is simultaneously implemented

5. Result 2 We solved the 3D \pm J Ising model by our method and compared with the complete graph embedding 1 proposed method 10 x 10 x 10 variables optimization extract&embed 400variables subproblem 4 x 4 x 4 variables extract complete graph embedding 2 complete graph embedding iteration < solution accuracy > -1.60 per variable -1.64 -1.68 -1.72 -1.76 -1.80 0 1000 2000 iteration number Accurate solution can be obtained with much smaller number of iteration

speaker : Shuntaro Okada

e-mail: shuntaro_okada@denso.co.jp

