特集 超高回転域における火炎挙動解析技術の開発 * Development of Combustion Behavior Analysis Technique in the Ultra High Engine Speed Range

加藤毅彦 Takehiko KATO 中 島 樹 志 Tatsushi NAKASHIMA 秋山清和 Kiyokazu AKIYAMA 清水里欧 Rio SHIMIZU

In order to clarify the combustion behavior in the ultra high engine speed range, a new technique has been developed. This technique is composed of ionization current detection and flame observation, and is highly heat-resistant, vibration-resistant, and has a quick response. From analyzing the flame front propagation in the high-speed research engine, it was found that the flame propagated throughout the entire cylinder over almost the same crank angle period irrespective of the engine speed introduction.

Key words: Ultra high engine speed range, Flame propagation, Ionization current detection, Flame observation

1. 緒言

レースエンジンの開発において,高出力化は優先度 の高い課題の一つである.レース規定により排気量や 気筒数などが制限される中でエンジン出力を向上する には,高回転化,吸入空気量の増大,燃焼の高効率化が 有効である.16,000 r/minを超える超高回転化に向けて, エンジンはショートストローク化し,また,吸入空気量 増大に向けてバルブエリアが拡大することから,燃焼 室形状は広く薄いディスク形状となる.つまり,燃焼に 不利な表面積 / 容積比の高い燃焼室内で,非常に短時 間で燃焼を終了させなければならない.燃焼の高効率 化に向けた改良手法を検討する上で,超高回転域での 燃焼挙動を把握することが重要であるが,これまで詳 細に解析した事例は無い.

我々は, 超高回転域での燃焼挙動の把握に向け, 二つ の火炎伝播挙動の計測技術を開発した. 一つは, 従来か ら火炎伝播時期の計測法として用いられるイオン電流 検出法に, 高耐熱性・高応答性を備えた, 超高回転エン ジンに対応する火炎伝播計測システムである. もう一 つは, 超高回転エンジンに適用可能な火炎の直接観察 技術である. 両計測手法のデータ比較により, 計測技術 の検証を行った.

本論文では,開発した超高回転域対応の火炎伝播解 析技術を紹介すると共に,研究用に仕立てた超高回転 エンジンにて解析した火炎伝播挙動について述べる.

2. 火炎伝播挙動解析技術

2.1 イオン電流検出法

火炎先端の伝播時期を検出する手法として,イオン 電流検出法は一般的な手法である.これまでにも,シ リンダヘッドガスケットへのイオンセンサの搭載, 点 火プラグをイオンセンサとして併用した例¹⁾³⁾が報告 されている.しかし,レースエンジンでは,シート状ガ スケットではなくリングタイプのメタルシールが使用 されているため,ガスケットへのイオンセンサの装着 は困難である.また,点火プラグ部のみのイオン電流情 報では,燃焼室全体の火炎伝播挙動を把握できないこ とから,従来と異なるセンサ開発が必要となる.また, 超高回転域への対応として,燃焼ガスにさらされても 耐えうる耐熱性と,高速燃焼に追従しうる高応答性が 要求される.

上記の課題を考慮し,設置する電気ケーブルの芯線 を電極,芯線周囲のエンジン壁面を接地電極とするイ オンセンサ方式を選択した(Fig. 1).シリンダヘッド の燃焼室壁面への搭載性と耐熱性を確保するため、イ オンセンサとして、インコネル材質の外径¢1.0 mm 外 皮と直径¢0.3 mm 芯線の間に、マグネシアの絶縁層を 形成する¢1.0 mmのケーブル線を用いた.ケーブル先 端にて、芯線と周辺のシリンダヘッド壁面間には非エ ポキシ系セラミック接着剤を塗布し、バイアス電圧印 加時の絶縁性を確保すると共に、イオンセンサ設置に

Fig. 1 Ionization sensor

*(社)自動車技術会の了解を得て、「2004年秋季大会学術講演会前刷集」No. 107-05より、一部加筆して転載

よる燃焼室容積の増大を抑えた.本構成により,イオン センサとして 1200 ℃の耐熱性を確保している.また, 超高回転エンジン特有の扁平な燃焼室形状への対応と して,ケーブル芯線先端の位置をシリンダヘッド壁面 と同一の高さになるように管理し,ケーブル芯線とピ ストンとの接触によるショートや破損を抑えた.燃焼 室全体における火炎先端面の伝播挙動を明確にするた め,本センサをシリンダヘッド壁面に計25点設置した.

イオン電流の信号処理回路として, Fig. 2 に示す出力 回路を考案した.本回路は,イオンセンサに高電圧をバ イアスとして印加する電源部と,イオン電流を電圧と して取り出すための検出抵抗,検出抵抗間の電位変動 から交流成分のみを取り出すACカップリング,後段 のデータ収集回路への過大出力を防止するための出力 電圧制限部から構成される.

イオンセンサとなるケーブル芯線にはマイナス電圧 (-300 V)を印加した.従来は,センサの検出感度を上 げるために,センサ部にプラス電圧を印加し,エンジン 壁面を接地電極とすることで,移動量の小さい陽イオ ンを表面積の広い燃焼室壁面にて捕捉する手法がとら れている.今回は,検出感度よりも局所での検出性を優 先し,センサ部にマイナス電圧を印加する方式とした. Fig. 3 に,入力周波数に対する出力応答性を示す.高周 波変動に対する遅れのない追従性,減衰特性を有して いることが分かる.本回路からの出力信号を,燃焼解析 装置 (AVL 製 Indiset Advanced) にて 200 kHz のサン

Fig. 2 Ionization current detection circuit

Fig. 3 Response of ionization current detection circuit

プリングレートでデータ収集することで, 高周波の信 号検出を可能とした.

2.2 直接観察法

火炎伝播挙動を把握する手法として,観察法は有効 であるが,超高回転エンジンの火炎伝播を直接観察し た事例は無い.今回,前述のイオン電流検出法と併用し て,火炎の直接観察を試みた.

乗用車用エンジンでの筒内火炎観察では、シリンダ ライナ、又はピストンを透明ガラスで製作して観察し た例⁴⁵⁵がある.しかし、超高回転領域では、高速移動す るピストンや、ピストンと高速にしゅう動して高い振 動を伴うシリンダライナへのガラス部材の使用は、耐 久性の面で不可能であると共に、燃焼室の壁温が車両 運転時と異なるため、火炎伝播挙動を変化させる可能 性がある.また、別手法として、エンジン燃焼室壁面の 一部に小径の貫通穴を設け、観察窓と小型カメラを内 挿する筒内観察手法も検討されているが⁶燃焼室から の熱負荷が高く、カメラの信頼性を確保することがで きない.

今回, エンジンの限られたスペースを活用し, エンジ ン駆動部の変更無しで筒内を観察する手法を考案した. Fig. 4 に観察システム構成を示す. シリンダヘッドに小 径の貫通穴を設け, ガスシールを兼ねた観察窓を設置 し, 後方に配置した内視鏡を介して筒内像を撮影機材 に転送した. 観察窓は, サファイア材の円形窓とインコ ネル材の筐体からなる. 燃焼ガスにさらされる観察窓 の熱的応力の低減と, 視野範囲の確保のため, 観察窓諸 元, エンジンへの搭載位置, 内視鏡の視野角を最適化し た. 内視鏡(三菱電線工業(株)社製)は, 石英製レンズと SUS 製筐体とからなり耐熱性確保のため, ガス冷却方 式を採用している. 内視鏡内部に流入した冷却ガスが レンズ群に直接触れながら先端の対物レンズに向けて 流れ, 内視鏡先端より流出し, 更に, 内視鏡と筐体の隙

Fig. 4 Apparatus of flame observation

間を経てエンジン外に排出する経路構成とすることで, 高い冷却性を確保している.また,一般の内視鏡にて使 用されている光学系接着剤を用いず,筐体となる金属 部材のみで内部レンズ群の配置と位置管理する構造と した(Fig.5).

内視鏡の後方に配置する撮影機材は, 内視鏡を介し てエンジンの振動が伝達しないよう, 内視鏡と10 mm の空間を設け, 独立して固定した. 撮影部は, イメー ジインテンシファイア(浜松ホトニクス社製)と外 部トリガ駆動カメラ(PCI 社製)からなる. エンジン クランク角度に同期して撮影するためのトリガパル ス制御回路は, エンジンから1°CA間隔で出力される クランク角度信号を基に, 1°CA単位でパルス出力時 期を変更可能である. また, カメラの画像取得レート (40 frame/s)内に撮影周波数を制御するよう, 特定の 燃焼サイクルのみにトリガパルスを出力する間引き機 能を有している. 本回路にて, イメージインテンシファ イアのゲート, カメラのシャッタを制御することで, 撮 影感度と撮影時期の制御性を確保した.

3. 実験結果と考察

3.1 火炎伝播解析技術の検証

研究用の単気筒エンジンに,前記2種類の火炎挙動 解析手法を適用し,超高速回転での火炎伝播挙動を解 析した.

各回転数にて, 燃料噴射量は最大トルクを発生す る空燃比 12.5 に, 点火時期は MBT (6000 r/min では 45° CA BTDC, 10,000 r/min 以上では 60° CA BTDC) に設定した. 燃料は市販の RON100 ガソリンを用いた.

Fig. 6 に, 燃焼1 サイクル分のイオン電流波形の例を 示す. 点火プラグとイオンセンサとの距離が長くなる 程, 波形の立ち上がりが遅れることが分かる. また, プ ラグ横で検出する波形には二つのピークが発生するの に対し, プラグから遠のくに従って一つのピークに変

Fig. 5 High heat-resistance endoscope

化する. これは, 一つ目のピークは火炎面が電極を通過 する際に発生する C₃H₃,H₃O,CHO 等のケミカルイオン, 二つ目のピークは高温の燃焼ガス中にて N₂ が熱解離 した際に発生するサーマルイオンと考えられ¹⁾ 火炎の 伝播が遅いボア端部では二つのイオン発生時期が明確 に分離されないためと推定している.

今回,本出力波形の立ち上がり点を,イオンセンサ への火炎先端面の到達時期とみなした.燃焼50サイク ル分について25点のイオンセンサへの火炎到達時期 を求め,イオンセンサの座標データと平均火炎到達時 期より補間計算し,クランク角度毎の火炎先端面の輪 郭形状を算出した.

また, 今回は, シリンダヘッドの燃焼室壁面でイオン 検出するために, 厳密には, 壁面近傍の火炎伝播挙動の 計測となるが, 燃焼室の空間的な厚みが薄いレースエ ンジンの TDC 付近での計測では, 燃焼室空間での火炎 伝播挙動との違いは少ないと考える.

Fig. 7 に, 16,000 r/min での, イオン電流検出法によ る平均火炎伝播挙動と, 直接観察法により撮影した火 炎画像を示す. 火炎伝播挙動の図中の数字は, 推定した 火炎先端面となるクランク角度(°CA ATDC)である. 一方, 画像は, 同一クランク角度にて撮影した 50 サイ クル分の火炎画像の内から平均的挙動の画像を選定し てある. イメージインテンシファイアのゲート期間は 約1°CA に相当する 10 µs であり, 瞬時の火炎挙動を 撮影している. 内視鏡はシリンダヘッドの燃焼室端面 付近に設置し, 90°の視野角のために像は湾曲するが, 燃焼室内の広範囲を観察可能にしている. 画像に明る く見えるのが火炎であり, その端を火炎先端として破 線で示してある.

画像から,火炎は点火プラグを起点にして,時間経過 と共に視野手前方向に進行しているのが分かる.

両計測手法のデータは共に,火炎の検出開始時期が およそ-30°CA ATDC,撮影機材が配置されたサイド側

Fig. 6 Typical ionization current signal

ボア端部への火炎到達時期がおよそ 10° CA ATDC と 一致していることから,本手法にて得られた火炎伝播 挙動は妥当なものであると判断する.

3.2 エンジン回転数による火炎伝播挙動への影響

エンジン回転数変更時の平均火炎伝播挙動を Fig. 8に,その結果に基いてボア水平断面全体を100% とした際の火炎伝播面積割合の増加傾向を Fig. 9に 示す.燃焼は点火プラグを起点とした火炎伝播により 進行しており,ノッキング等の自着火現象は検出され なかった.火炎がボア全体に伝播する時間は,エンジ ン回転数の上昇に伴い短縮している.横軸をクランク 角度として整理すると,エンジン回転数に関わらず, 約50° CA と一定期間にてボア全体に火炎が伝播する ことが分かる.

火炎伝播挙動の計測結果から, 燃焼室内のインテー ク方向, エキゾースト方向へ向かう火炎伝播速度を算 出した(Fig. 10). エンジン回転数の上昇に伴い, 伝播 速度は増大し, また, インテーク方向, エキゾースト 方向に向かう伝播速度差が減少し, 均等化する傾向で あった.

Fig. 11 の 16,000 r/min における火炎画像の拡大写 真からも分かるように,高速回転域でも、しわ状の火炎 面構造になっており,乱れの影響を強く受けながら火 炎は伝播している.つまり,吸気流速,ピストン移動速 度の増大により,点火時期以降,燃焼室内に残留する乱 れが増大し,乱れ強度に依存したしわ状火炎の伝播促 進が得られたものと考える.

その確認として, 熱線流速計により筒内の乱れを計 測した. Fig. 12 のように, 燃焼室内の点火プラグ電極 位置に熱線流速計を2本交差して設置し, 一方はイン テークーエキゾースト方向, 他方はフロントーリアサ イド方向の流速を測るように配置した. 流速を求める 際に, 筒内圧センサの信号を基にした筒内圧力, 温度変

Fig. 7 Flame propagation at 16,000 r/min measured by ionization current sensors and flame observation method

Fig. 8 Flame propagation

Fig. 10 Flame propagation velocity

Fig. 11 Flame front shape

Fig. 12 Hot-wire anemometers

Fig. 13 Turbulence intensity at plug gap

化より,気流の熱伝導率,粘性係数,密度を算出し,補正 した.⁷ 流速の1kHz以上の周波数成分を抽出し,10サ イクル分の実効値 RMS を乱れと定義した.計測結果を Fig. 13 に示す.熱線流速計の耐久性から 10,000 r/min までの計測であり,また,熱線流速計の応答性不足によ り真値を十分にはとらえていない可能性があるが,エ ンジン回転数の上昇に伴い,吸気流に含まれる乱れ,圧 縮行程で生成する乱れが増大する傾向が確認された. このエンジン回転数の上昇に伴い増大する乱れが,火 炎伝播を促進している主要因と考える.

また, 乱流燃焼速度が, 乱れ強度により支配され, 燃 焼室壁面温度の影響を受ける層流燃焼成分の影響が相 対的に減少するため, 均等な速度分布になったと推定 する.

4. 結言

- (1) 超高回転域での燃焼挙動解析技術として, 耐熱性耐振動性, 高応答性を有する, イオン電流検出法, 直接 観察法からなる火炎伝播計測技術を開発した.
- (2)研究用に仕立てた超高回転エンジンに適用し,超高 回転域での火炎伝播挙動を解析した結果,火炎伝播 速度は,エンジン回転数の上昇に伴い増速し,ボア全 体に火炎が伝播する期間は,エンジン回転数に関わ らず,ほぼ一定のクランク角期間となることを確認 した.
- (3) エンジン回転数の上昇に伴い増速する火炎伝播の 要因解析として, 筒内乱れを計測した結果, エンジン 回転数の上昇に伴い, 吸気流に含まれる乱れ, 圧縮行 程で生成する乱れが増大する傾向が確認された.

<参考文献>

- 1) 島崎勇一:フォーミュラ1エンジンの燃焼状態 検出システムの研究(第1報),自動車技術会,学 術 講 演 会 前 刷 集,20045649, No. 107-04 (2004), pp. 19-22.
- 2) 北脇俊輔:点火電極イオンプローブ法による燃焼診 断法の基礎的研究,自動車技術会,学術講演会前刷 集,20045290, No. 34-04 (2004), pp. 7-10.
- 3) 吉山定見:ガスケット型イオンセンサによる火花点 火機関の燃焼診断(第3報),自動車技術会,学術講 演会前刷集,20055244, No. 20-05 (2005), pp. 1-6.

- 4) 清水里欧:新コンセプト直噴ガソリンエンジン(第3報),自動車技術会,学術講演会前刷集,20005250, No. 21-00 (2000), pp. 1-4.
- 5) 佐々木隆: 筒内現象解析用可視化エンジンの紹介, Honda R&D Technical Review, Vol. 10 (1998), pp. 78-89.
- 6) 中島樹志:新コンセプト直噴ガソリンエンジン(第4報),自動車技術会,学術講演会前刷集,20005141, No. 21-00 (2000), pp. 5-8.

加藤 毅彦 (かとう たけひこ) (株)日本自動車部品総合研究所 研究1部 燃焼の計測,解析に従事

中島 樹志 (なかしま たつし) パワトレイン機器事業グループ 特定開発室 エンジン開発に従事

秋山 清和
(あきやま きよかず)
(株)日本自動車部品総合研究所
研究2部
通信システム開発に従事

清水 里欧 (しみず りおう) トヨタ自動車(株) パワートレーン制御開発部 ガソリン燃焼開発に従事