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 This paper describes a system for rain and fog recognition using multiple in-vehicle sensors. Fog density was 
calculated from both the preceding-vehicle images captured by an in-vehicle camera and the inter-vehicle distance 
measured by a millimeter-wave (mm-wave) radar. Rainfall determination is achieved by detecting raindrops on 
the windshield using images captured by the in-vehicle camera. Experiments using in-vehicle camera images and 
radar data collected while driving vehicles in foggy or rainy and fair conditions demonstrated the accuracy and the 
applicability of our system.

＊ ITS JAPANの了解を得て，「14th World Congress on Intelligent Transport Systems, 3168, Oct. 2007」より，一部加筆して
転載

１. INTRODUCTION
Recently great advances have been seen in the development 

of ITS technology. Driver assistance and navigation with the 

aid of computers and sensors are being actively developed. In 

particular, in-vehicle camera images are commonly utilized 

since they contain important visual information. Driving 

is more difficult in adverse weather conditions than in fair 

conditions, so accident rates dramatically increase. Weather 

changes temporally and spatially, so it is important to develop 

techniques that recognize weather in real-time by in-vehicle 

sensors for driver assistance.

In this paper, we propose a weather recognition system 

and focus on rain and fog using an in-vehicle camera and 

a  mm-wave radar device. Figure 1 shows an overview 

of our system. From in-vehicle camera images and  mm-

wave radar data, our system outputs two kinds of weather 

information around a vehicle: fog density and a determination 

of rain. Auto-wiping, automatic lighting of fog lamps, speed 

and break control, and rousing of attention are examples of 

potential assistance that can be realized with respect to our 

system.

２. FOG RECOGNITION
2.1 Related works
Koschmieder’s model expresses the degradation of 

brightness by atmospheric scattering1). Based on this model, 

Narashimhan and Nayar proposed a method that restores the 

contrast of images captured in foggy conditions2). Techniques 

of visibility enhancement and contrast restoration for driving 

assistance which use this model have also been developed3)4). 

According to Cavallo et al., under foggy conditions the 

distance to a preceding vehicle’s tail-light is perceived to 

be 60% further away than under fair conditions5). For real-

time estimation of visibility in foggy conditions using in-

vehicle stereo cameras, Kuwon proposed Motorists Relative 

Visibility (MRV)6), and Hautiere et al. proposed a method to 

estimate visibility distance7). To realize fog lamp automation, 

Leleve and Rebut tried to estimate visibility using an in-

vehicle camera8).

2.2 Algorithm
Our system calculates fog density using both an in-vehicle 

camera and a mm-wave radar device9)10) (Fig. 1). To evaluate 

fog density, we focus on the relationship between visibility 

degradation of a preceding vehicle and inter-vehicle distance 

(Fig. 2). mm-wave radar is utilized with an in-vehicle camera, 

since it can measure distance without being in  uenced by adverse 

weather.

2.2.1 Vehicle image clipping

Figure 3 shows the process of vehicle image clipping. A 

preceding vehicle region is detected by template matching in 

a candidate rectangle area with a vehicle template image. The 

candidate area’s size and position are determined from information 

provided by  mm-wave radar, including inter-vehicle distance 

and vehicle position in the image. The template image and each 

rectangle image in the candidate area are normalized to restore 

the contrast degraded by fog before calculating their similarity. 

Similarity is defined as their inner product. Our system clips a 
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rectangle image that gives the largest similarity as the preceding 

vehicle image.

When this method was applied to 10,028 images, clipping 

accuracy was 92.86%. Here, all images included a preceding 

vehicle. In this experiment, a typical vehicle image captured 

under fair conditions was used as the template image.

2.2.2 Fog density calculation
An scattering coef  cient of the atmosphere represents fog 

density, which is expressed using Koschmieder’s model as

L = L0e －kd ＋Lf (1 －e －kd) ･････････････････(1)

The scattering coefficient is calculated from both the 

visibility of the preceding vehicle and distance to it. In 

Equation (1), L  is observed luminance, L 0 is the intrinsic 

luminance of an object, Lf is the luminance of the sky, k  is 

the scattering coef  cient of the atmosphere, and d is distance 

to the object. To evaluate vehicle visibility, we use the 

relationship between the variance of pixel values of the image 

and an original image and derive the following equation from 

the Equation (1).

k =－ logV/V02d  ･･････････････････････････(2)

where V and V0 represent the variance of pixel values of 

the vehicle image and the original image, respectively. The 

original image is a vehicle image captured in fair conditions 

(k  = 0). Figure 4 shows fog images and their k  calculated 

by our system. We can observe that k gets higher as fog gets 

denser.

Fig. 1  System overview
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2.3 Experiment

2.3.1 Setup
We equipped a vehicle with an in-vehicle camera and 

a mm-wave radar device, which provides two kinds of 

information: distance and relative speed to preceding objects. 

From such information, our system finds the candidate 

position and size of a preceding vehicle in a captured image. 

Two vehicles of different colors and shapes were prepared 

as preceding vehicles. We collected data for this experiment 

while driving the vehicle in fair and various foggy conditions. 

Data were classi  ed into three classes of fog density: Light, 

Moderate and Dense, by human subjects. Some were used as 

training data to determine the thresholds about fog density 

between two classes, and others were used as test data for 

system evaluation.

2.3.2 Results and discussion
We compared the determinat ions obtained by our 

system with human subjects to evaluate the performance 

of our system. Table 1 shows the confusion matrix for 

determinations by the proposed system and by human 

subjects. The numbers in parentheses are the percentages of 

the element to the total number of elements in each row; the 

percentages in diagonal elements represent the precision rate 

for each class. For all classes, the overall precision rate was 

84%. As for the precision of each fog density level, Light 

88%, Moderate 73%, and Dense 92% were obtained. The 

results demonstrate that our system worked well, despite the 

variation of vehicles.

３. RAIN RECOGNITION
Actually, auto-wiping systems, which have already been 

implemented on some commercial cars, are controlled by 

a “rain sensor.” However, the target region for detection 

covered by the sensor is small, so it does not necessarily 

re  ect changes in the visibility from a driver’s viewpoint. On 

the contrary, an in-vehicle camera covers most of the driver’s 

visual  eld because it targets the entire windshield.

3.1 Algorithm
Our system detects raindrops on a windshield and judges 

whether to identify them as rain from the number of detected 

raindrops11)12) (Fig. 1).

Raindrops have a uniform shape; any drop basically 

appears circular when seen through a windshield, and 

although a raindrop itself is clear and colorless, it is visible 

due to the ref lection of its background (Fig. 5). Raindrop 

texture varies since the background reflecting them varies. 

However we believe that at least raindrops share the above 

features. We automatically extract such image features using PCA.

(a)      = 1.35 × 10-2 (b)     = 3.95 × 10-2

(c)      = 8.28 × 10-2 (d)     = 1.38 × 10-1
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Fig. 4  Scattering coeffi cients for various foggy conditions

 By proposed system
 Light Moderate Dense

 Light 14 (88%) 2 (12) 0 (0) 
By humans Moderate 2 (9) 16 (73) 4 (18)

 Dense 0 (0) 2 (8) 23 (92)

Table 1  Determinations by the proposed system and 
human subjects

Fig. 5   Refraction of the background and surface of a raindrop on the windshield
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While raindrop positions on the windshield do not move 

in relation to the in-vehicle camera, the external view 

changes when the vehicle is running. Therefore, raindrops 

are highlighted by background changes. Exploiting this 

phenomenon, we improve detection accuracy by focusing 

on the temporal change of the image with raindrops dif  cult 

to detect from a single frame by the influence of complex 

backgrounds.

3.1.1 Raindrop detection
Beforehand, raindrop templates are created and used 

for raindrop detection as follows. A rectangular region 

circumscribing each raindrop on a windshield is manually 

clipped from in-vehicle camera images captured in rainy 

weather. By applying PCA to the set of clipped images, 

eigenvectors corresponding to the largest eigenvalues are 

selected. A subspace generated by these eigenvectors is called 

“eigendrops,” which we use as raindrop templates in the same 

manner as a subspace method13).

Raindrops are detected from input images as follows. To 

highlight the image features of raindrops, an averaged image 

is made from multiple sequential frames obtained from input 

images. Our system computes similarity between an image 

of each small area in the average image and the eigendrops. 

The area is detected as a raindrop candidate if the similarity 

is larger than a threshold. Finally, precise raindrop areas are 

obtained by frame-wise matching the raindrop candidates.

3.1.2 Rainfall determination
Rainfall is determined by counting the number of 

raindrops detected in the detection stage. When the number 

of raindrops in the image exceeds a certain threshold, we 

determine that it is rainy.

3.2 Experiment

3.2.1 Setup
We mounted an in-vehicle camera and captured images 

while driving the vehicle in rainy and fair conditions. Our 

system was applied to the input video sequence. Then recall 

and precision ratios of raindrop detection were calculated 

to evaluate detection accuracy. The eigendrops were made 

from 500 raindrop images (Fig. 6). In this experiment, the 

subspace dimension was six.

3.2.2 Results and discussion

Figure 7 shows examples of raindrop detection, while 

Fig. 8 depicts the recall and precision curves. When the 

number of frames used for averaging increased, although 

recall improved significantly, the precision fell somewhat. 

Furthermore, when the number of frames used for frame 

matching increased, although precision improved, recall 

dropped. The best results were precision = 97% and recall = 51% 

when similarity threshold = 0.70 with 5 frame-averaging 

and 10 frame-matching. Precision is more important than 

recall for practical use as a windshield wiper controller, since 

incorrectly recognizing raindrops and letting windshield 

wiper malfunction must be avoided.

An 89% successful rainfall determination rate was 

achieved using raindrop detection results when we varied the 

threshold of the number of raindrops.

1st: 45.6% 2nd: 13.8% 3rd: 8.6% 4th: 4.0% 5th: 3.6% 6th: 3.1% 7th: 2.4% 8th: 1.8%

Fig. 6   Eigendrops and their contribution rates

Fig. 7  Raindrop detection results
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４. SUMMARY
In this paper, we proposed a weather recognition system 

that recognizes fog density level and determines whether it 

is raining using an in-vehicle camera and mm-wave radar. 

Experiments were conducted using actual data collected 

while driving vehicles. The fog level recognition rate 

achieved 84%, and the rainfall determination success rate 

was 89%. From these results, we con  rmed the effectiveness 

of the proposed system for rain and fog recognition.
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