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Adaptation-＊
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In this paper, we propose a new prediction technology for turning behavior at intersections using a driver 
behavior model to reduce accidents at intersections. The technology adapted the driver behavior model to the 
individual characteristics of each driver to improve prediction time and accuracy. The driver behavior model 
consisted of vehicle control signals, such as the accelerator throttle, brake, and velocity. In tests, in order to predict 
a driver’s behavior, the drivers either went straight or turned at intersections in a driving simulator. Consequently, 
after the adaptation of the proposed technology, the prediction recognition accuracy rate was 95.6% at a position of 
 ve seconds driving distance to the intersections, however, before the adaptation, the accuracy rate was only 52.5%. 

Additionally, in this paper we propose a new navigation system based on turning behavior prediction at 
intersections. The navigation system would tell the driver an updated guidance message in case that the driver 
appears to have misheard the previous guidance.
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＊（社）自動車技術会の了解を得て，「Review of Automotive Engineering」Vol. 29 No.2 より，一部加筆して転載

１. INTRODUCTION
The number of traffic accidents continues to increase in 

the last decade. In response, preventive safety technologies 

to decrease the dangers or sources of accidents have been 

researched and developed. We believe that driving behavior 

prediction technology contributes to decreasing accidents as a 

preventive safety technology. For example, if a car can predict 

dangerous driving behavior in advance, the car can warn its 

driver of the danger early on. In Japan in particular, over 50 % 

of traffic accidents happen at intersections. Therefore, we 

focused on predicting turning behavior at intersections1). 

Fi rst ,  we developed a t u r n ing behavior model at 

intersections. The model consists of vehicle control signals, 

the accelerator throttle, brake, and velocity. We tested it in 

a driving simulator. The test showed that some drivers had 

a low recognition rate because the turning behavior model 

represented the average of plural drivers’ behaviors. 

In this paper, we propose a prediction technology for 

turning behavior at intersections with driver behavior 

adaptation. The technology adapts the weights of the turning 

behavior model for individual characteristics to improve 

prediction time and accuracy. Furthermore, we propose a new 

navigation system using the prediction technology.

２. DRIVER BEHAVIOR MODEL
Studies on driving behavior prediction were started in the 

late 1990s. Liu modeled driving behavior as a Hidden Markov 

Model (HMM)2)8). HMM is widely used in driving behavior 

prediction9)-11). Some researchers also proposed a Bayesian 

network model5)6)12). These models find it hard to predict 

driving behaviors at 3 seconds before intersections, because 

they require a longer observation time. 

We utilized both the driver’s operation-time and operation-

amount to predict the driving behavior earlier. We developed 

a method for creating a behavior model that represents the 

preparation for turning at intersections and for comparing it 

with actual drivers’ operations1). 

The turning behavior model is shown in Fig. 1. The 

horizontal axis represents time, and at time = 0, the car is in 

the intersection. The vertical axis represents the normalized 

value of vehicle control signals. Each of the dots with lines 

indicates a normalized accelerator operation, brake operation, 

and velocity. We constructed this turning behavior model 

from 80 samples of the behaviors for preparing to turn at the 

intersections in the driving simulator. At  rst, we clustered 

these samples into five groups using the k-means method7). 

Next, we defined a typical pattern as the average in each 
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group. Finally, we obtained a behavior model consisting of 

 ve typical patterns. 

We tested our prediction method in the driving simulator. 

The driving simulator is shown in Fig. 2. In the experiments, 

the drivers either went straight or turned at the intersections. 

The recognition rate of the drivers included in the turning 

behavior model was better than that of the drivers not 

included in the turning behavior model. Therefore, we expect 

to improve prediction performance if we adapt the turning 

behavior model to the individual characteristics of specific 

drivers.

In this paper, we propose a prediction technology with 

driver behavior adaptation. A data f low diagram in our 

prediction system is shown in Fig. 3. The prediction system 

consists of two components. One component is the driving 

behavior prediction, the other is driver behavior adaptation. 

In the driving behavior prediction, the comparison-(a) block 

compares vehicle control signals with the turning behavior 

model and then outputs a similarity. If the similarity is 

over a threshold, we decide that the driver will turn at the 

intersection. In the driver behavior adaptation, the driving 

behavior recognition block outputs a driving behavior the 

driver has done; this is a recognition result. The comparison-

(b) block compares the recognition result with the prediction 

result and then outputs an evaluation value. The updating 

weight block re-computes a set of weights in the turning 

behavior model based on the evaluation value.

In order to achieve the adaptive system, a solution is 

required to deal with two types of variations causing a 

similarity error between the turning behavior model and 

the set of vehicle control signals in actual driving. One is 

a variation between identities, and the other is a variation 

within an identity. Therefore, we add the driving behavior 

adaptation to a compensation mechanism for these variations.

Fig. 1  Turning behavior model
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(c) Pattern 3
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(d) Pattern 4
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(e) Pattern 5
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Fig. 2  Driving simulator
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３. VARIATION BETWEEN IDENTITIES AND 
VARIATION WITHIN IDENTITY

We assume that the variation between identities appears 

in a frequency rate in the use of typical patterns. Three 

drivers’ pattern frequency rates are shown in Fig. 4. The 

horizontal axis corresponds to the typical patterns of the 

turning behavior model shown in Fig. 1. The vertical axis 

represents the frequency rate. Driver A has a high frequency 

rate for patterns 2 and 4. Driver B has a high frequency 

rate for patterns 1 and 5. Driver C has a high frequency rate 

for patterns 1 and 4. Therefore, each driver probably has a 

characteristic combination of the typical patterns.

We assume that the variation within identity appears in 

time series variations of vehicle control signals3). Ten sets 

of vehicle control signals of specific drivers’ preparations 

for turning at the intersections are shown in Fig. 5. Each of 

the dots indicates a normalized accelerator operation, brake 

operation, and velocity. The line indicates a summation of 

the three vehicle-control-signal standard deviations. The 

horizontal axis represents time, and at time = 0, the car 

is in the intersection. The left vertical axis represents the 

normalized value, and the right vertical axis represents the 

summation of the standard deviations. Each of the vehicle 

control signals appears dispersive at all time instants. 

However, the summation of the standard deviations at around 

3 seconds before the intersection is smaller than that at any 

other time instants. Therefore, we estimate that drivers 

probably have time instants in which the vehicle control 

signals are relatively constant.

From the above results and assumptions, we theorize the 

followings. 

(1) Each driver has a distinctive combination of the 
typical patterns.

(2) Each driver has distinctive time instants in which 
the vehicle control signals are relatively constant. 

Based on these, we develop an adaptive system to optimize 

the inf luences of typical patterns of time instants in the 

turning behavior model.

４. DRIVER BEHAVIOR ADAPTATION
4.1 Prediction: Comparison with turning behavior 

model
We explain about the comparison-(a) block shown in Fig. 3. 

We divide each pattern in the turning behavior model into 

sub-patterns by time windows to raise the representative 

power. The comparison-(a) block compares the sub-patterns 

with actual vehicle control signals. In this paper, the width of 

the time windows is 5 seconds and the interval between the 

time windows is 1 second. The similarity calculation is as 

follows.

First, we define the actual vehicle control signals at a 

discrete time t.

x(t) = (x1(t), x2(t), x3(t))T ････････････････････(1)

where, t = 0 indicates the car is at a start, x1(t) is an 

accelerator operation, x2(t) is a brake operation, and x3(t) is 

velocity.

Second, we de  ne the actual vehicle control signals of the 

last n samplings.

X(t) = (x(t n+1), x(t n+2),･･･, x(t 1), x(t)) ･･･････ (2)

Pattern number

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Fr
eq

ue
nc

y 
ra

te

Driver A
Driver B

Driver C

Fig. 4  Pattern frequency

-10 -8 -6 -4 -2 0
Time (s)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 v
al

ue

0

0.1

0.2

0.3

0.4

0.5

S
um

m
ation of 

standard deviation

Acceleration Operation
Brake Operation

Velocity
Summation of Standard Deviation

Fig. 5  Vehicle control signals of drivers’ preparation 
for turning at intersections



特　　集

‒ 118 ‒

where, n is total sampling number equal to the width of the 

sub-pattern. 

Third, we define the vehicle control signals in the sub-

pattern.

y( i,s) = (y1( i,s), y2( i,s), y3( i,s))T ･･････････････(3)

where, i is the sub-pattern number, s is the sampling period 

of the time window, y1(i,s) is an accelerator operation, y2(i,s) 

is a brake operation, and y3(i,s) is velocity.

Fourth, we de  ne the sub-pattern.

Y(i,s) = (y(i,s) n+1), y(i,s n+2),･･･, y(i,s 1), y(i,s)) ･･･(4)

Fifth, we de  ne the Euclidean distance between the data in 

the sub-pattern and actual vehicle control signals.

d(x(t), y(i, s)) =         (xk(t) yk(i,s))2
3

k=1

 ････････(5)

Sixth, we sum up the distances over the n samples and then 

multiply the distance summation by a weight.

d*(i,t) = w(i,t) d(x(t k+1), y(i,s k+1))
n

k=1
 ･･･････(6)

where, w(i, t) (0  w(i, t)  1) is the weight of the sub-

pattern. The reliability of the sub-pattern i is higher as w(i,t) 

is closer to 0.

Seventh, we select the minimum d*(i,t) of all sub-patterns.

iMD(t) = arg min[d*(i,t)]i∈I  ････････････････････(7)

Eighth, we normalize d*(iMD(t), t) by the maximum 

d*(iMD(t), t) until time t  and then obtain the similarity.

S(t) = 1
max d*(iMD( ), )

d*(iMD(t),t)

0 t

 ･･････････････････(8)

Finally, we predict the driver turning behavior at an 

intersection if the car is within 150 meters of the intersection 

and the similarity S(t) is over a threshold .

4.2 Driver behavior adaptation: Updating weights
We explain about the updating weight block shown in Fig. 3. 

The updating weight block re-computes the weights w (i,t) of 

all sub-patterns. The method of updating weight depends on 

the prediction result and the recognition result.

(1) Correct case: The prediction result is “turning” and is the 

same as the recognition result.

(2) Incorrect case: The prediction result is different from the 

recognition result.

For case (1), we attempt to improve the prediction time. For 

case (2), we attempt to reduce the number of false-positive 

predictions. No action is taken for any other cases.

(1) Correct case

We assign a reinforcement value to the sub-pattern on 

correct prediction and then update the weight of the sub-

pattern.

First, we determine the reinforcement value v(tn) when we 

give a reward at a discrete time t .

v(tn) = { (t-tn)r if S(tn) 
0 otherwise

 ･････････････････(9)

where, tn（0 < tn < t）is a discrete time, r is the reward, 

and  is a common ratio of a geometric progression. The 

reinforcement value calculation in Eq. (9) is based on pro  t 

sharing. Pro  t sharing is a typical credit assignment method 

in the classi  er system4). In this paper,  is greater than one to 

improve the prediction time.

Second, we de  ne a function to assign the reinforcement 

value to the sub-pattern iMD(tn).

f1 (i,t) =
iiMD(tn)v(tn)

t

tn=ti

iiMD(tn)

t

tn=ti

 ･････････････････････(10)

where,  is the Kronecker delta, and t l (0 < t l < t) is a 

discrete time.

Third, we update an element u(i,t) of the weight using the 

function ƒ1(i,t).

u(i, t+1) u(i,t) C1 f1(i,t)  ･･･････････････････(11)

where, C1 is a constant.

Finally, we normalize u(i,t) to obtain w(i,t).
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exp(Cu( j, t))
K

j=1

exp(Cu(i,t))
w(i,t) =  ････････････････････(12)

where, K is the number of total sub-patterns, and C is a 

constant.

(2) Incorrect case

We assign a penalty value to the sub-pattern based on an 

incorrect prediction and then update the weight of the sub-

pattern.

First, we access the stored data X(t r) of the vehicle 

control signals and then calculate the similarity S(tr) again. 

The data is stored from a discrete time t1 to a discrete time 

t2 (t1  tr  t2  t). At the time t2, the car is in the intersection.

Second, we determine the penalty value p(tr).

p(tr) = { S(tr) if S(tr) >
0 otherwise

 ･････････････(13)

Third, we de  ne a function to assign the penalty value to 

the sub-pattern iMD(tr).

f2(i, tr) = iiMD(tr) p(tr)  ･･････････････････････････(14)

where,  is the Kronecker delta.

Fourth, we update an element u(i,tr) of the weight using the 

function f2(i,t r).

u(i,tr+1) u(i,tr) C2 f2(i,tr)  ･･････････････････(15)

where, C2 is a constant.

Fifth, we normalize u(i,tr) to obtain w(i,tr) by Eq. (12).

Finally, we update the weight w(i,t) through L iterations.

５. EXPERIMENTS
5.1 Methods
We tested the adaptive system in the driving simulator. 

Two drivers not included in the turning behavior model drove 

in the driving simulator courses. Both drivers were male 

and in their twenties. The data acquisition procedure was as 

follows.

(1) Each driver drove the estimation course shown in Table 1.

(2) Each driver drove 50 trips around the learning course 

shown in Table 1.

(3) Then each driver drove the estimation course again.

In the test, instructions for the drivers consisted of “course 

guidance” or “whether the driver should go straight or turn at 

an intersection.” In the courses, there were no other cars on 

the road.

The evaluation procedure was as follows. At first, we 

updated the weights w(i, t) in the learning course trips. The 

parameters in the prediction system are shown in Table 2. 

Next, we predicted turning behaviors in the estimation course 

trips using the updated weights and then output a recognition 

rate as a test result. In this paper, we de  ne the recognition 

rate:

Recognition rate

= (the number of TP + the number of TN) /
the total number ･･････････････････････････(16)

where, TP is true positive and TN is true negative. In this 

test, TP and TN are followings.

(1) True positive: The prediction result is “turning” before the 

intersection and the driver has turned at the intersection.

(2) True negative: The prediction result is “non-reaction” 

before the intersection and the driver has gone straight 

through the intersection.

5.2 Results

(a) Learning course
Length About 7 km

Number of intersections
for turning 14

Number of intersections
for going straight 8

(b) Estimation course
Length About 5 km

Number of intersections
for turning 10

Number of intersections
for going straight 7

Table 1  Driving courses in the driving simulator

Parameter Value
n 10

u(i ,t )(initial) 1
0.5

r 0.002
1.2

K 30
C 1
C1 0.8
C2 0.2

Table 2  Parameters of the prediction system
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A part of the similarities using updated weights in the 

estimation course trip is shown in Fig. 6. The horizontal axis 

represents the time from the start. The vertical axis represents 

the similarity. The similarity is greater than the threshold  

only before the intersections where the driver has turned. 

The averages of the recognition rates are shown in Fig. 7. The 

horizontal axis represents the number of learning course trips. 

The vertical axis represents the average of the recognition 

rates. Each of the dots with lines indicates the averages of 

the recognition rates at 3 seconds before the intersections 

and at 5 seconds before the intersections. The average of the 

recognition rates at 3 seconds before the intersections was 

98.5% and that at 5 seconds was 95.6% when we used the 

weights updated with the 50 learning course trips. On the 

other hand, the average at 3 seconds before the intersections 

was 92.5% and that at 5 seconds was 52.5% when we used 

the  xed weights shown in our previous work1). In the work, 

the  xed weights were determined after several attempts. In 

consequence, the adaptive system improves prediction time 

and accuracy.

６. NAVIGATION SYSTEM USING DRIVING 
BEHAVIOR PREDICTION

We propose a new navigation system as one application 

of our prediction. Today, most systems guide drivers to an 

intersection they should turn at by informing them of the 

distance to the intersection. However, drivers often turn at a 

different intersection or pass through the guided intersection 

due to misunderstanding the guidance. We believe that our 

driving behavior prediction can achieve effective guidance 

that reduces this type of misunderstanding. 

If the navigation system understands that the driver will 

probably turn at a non-target intersection, the navigation 

system can tell the driver to go straight (Fig. 8(a)). If the 

navigation system understands that the driver will probably 

not turn at the non-target intersection, the navigation 

system can stay silent. Moreover, if the navigation system 

understands that the driver will probably not turn at the 

target intersection, the navigation system can tell the driver 

to turn (Fig. 8(b)). If the navigation system understands that 

the driver will probably turn at the target intersection, the 

navigation system can stay silent.

An example of a guidance scene by our proposed 

navigation system is shown in Fig. 9. The picture is a forward 

view. The upper graph indicates a similarity and the lower 

graph indicates actual vehicle control signals. In this scene, 

the driver shows signs of turning at a block short of the target 

intersection, therefore the navigation system tell the driver to 

turn.

７. CONCLUSION
In this paper, we proposed a prediction technology for 

turning behavior at intersections with driver behavior 

adaptation. The driver behavior adaptation can optimize the 

in  uences of typical patterns and time instants in a turning 

behavior model. We tested the adaptive system in a driving 

simulator and then verified that it can improve prediction 

performance.

The prediction technology described in this paper can 

predict whether a driver will either go straight or turn at an 

intersection. In the future, we plan to expand the technology 

to predict stopping, turning, and going straight behavior.

Fig. 6  Part of similarities using updated weights in the 
estimation course trip
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