
Cepstrum-based feature vectors, such as mel frequency cep-

stral coefficients (MFCCs), are generally used in speech

recognition. These feature vectors are estimated over 20 to

30 milliseconds and accurately extract static information

from speech signals. In addition to static feature vectors,

dynamic information that describes temporal change among

several successive features is usually included in the feature

vector. Several methods for integrating dynamic information

have been proposed 1)2)3). The simplest method including

dynamic information is to concatenate several successive

features into a single feature vector. The concatenated high-

dimensional vectors often include nonessential information

and incur heavy computational load. Therefore, to reduce

dimensionality, a feature transformation method is often

applied to concatenated vectors.

Linear discriminant analysis (LDA), also known as Fisher

discriminant analysis (FDA), is widely used to reduce

dimensionality, and is a powerful tool to preserve discrimi-

native information 4)5). LDA assumes that each class shares

a common class covariance 6). However, this assumption

does not necessarily hold for a real data set. In order to over-

come the limitation, heteroscedastic discriminant analysis

(HDA) has been proposed 7). HDA employs individual

weighted contributions of the classes for its objective func-

tion. In addition, a generalization method for LDA and

HDA has been proposed, which is called power LDA

(PLDA) 8).

These methods may result in an unexpected dimensionality

reduction if the data in a certain class consist of several clus-

ters, i.e., multimodal, because they implicitly assume that data

are generated from a single Gaussian distribution. In speech

recognition, speech signals for acoustic model training tend to

be multimodal because they are generally collected under vari-

ous conditions, such as gender, age and noise environment.

Therefore, each class such as a phone is generally represented

as a Gaussian mixture model (GMM) or HMM whose states

are represented by GMMs in a speech recognizer. Hence,

dimensionality reduction methods without handling multi-

modality may give unsatisfactory performance, so a dimen-

sionality reduction method for multimodal data is desired to

improve speech recognition performance.

Recently, several methods have been proposed to reduce the

dimensionality of multimodal data in the machine learning

community 9)-12). It is important to preserve the local struc-

ture of data in reducing the dimensionality of multimodal

data appropriately. Locality preserving projection (LPP) 10)

finds a projection such that the data pairs close to each other

in the original space remain close in the projected space.

Thus, LPP reduces dimensionality without losing informa-

tion on local structure. Local Fisher discriminant analysis

(LFDA) 11) is also proposed as a supervised method for mul-
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timodal data, while LPP is an unsupervised method. To deal

with multimodal data, LFDA combines the ideas of FDA

and LPP, maximizes between-class separability and pre-

serves within-class local structure. Thus, LFDA is an exten-

sion of LDA to reduce the dimensionality of multimodal

data.

Since LFDA is based on LDA which assumes homoscedas-

ticity, the effectiveness of LFDA may be limited. To reduce

the dimensionality of multimodal data appropriately, we

extend HDA which assumes heteroscedasticity. To deal

with multimodal data using HDA, we combine the ideas of

LPP and HDA, and propose locality-preserving HDA. In

addition, we also propose locality-preserving PLDA. These

extensions can be expected to yield better performance

because they reduce the dimensionality of multimodal data

appropriately.

Locality-preserving methods such as LFDA and the pro-

posed methods require considerable computational time to

obtain optimal projections when there are many features. In

order to slash time, we propose an approximate calculation

scheme. Experimental results show that the locality-preserv-

ing dimensionality reduction methods yield better perform-

ance than traditional ones.

The paper is organized as follows. Feature transformation

methods are reviewed in Section 2. Existing locality-pre-

serving dimensionality reduction methods are reviewed in

Section 3. Proposed methods are introduced in Section 4.

An approximate calculation to obtain a sub-optimal projec-

tion is given in Section 5. Experimental results are presented

in Section 6. Finally, conclusions are given in Section 7.

We formulate the problem of linear dimensionality reduc-

tion. Given n-dimensional features xj where j

=1,2,...,N, e.g., concatenated speech frames, and associated

class labels yj∈{1,2,...,K}, e.g., phonemes, let us find a

projection matrix B that transforms these features

to p-dimensional features           , where , p<n , 

, K denotes the number of classes, and N

denotes the number of features.        denotes the transpose

of the matrix X. Here, we briefly review existing dimension-

ality reduction methods. The aim of the techniques are to

find a projection matrix B.

2.1 Linear�Discriminant�Analysis

In LDA, within-class, between-class and mixture covariance

matrices are used to formulate its objective function. These

covariance matrices are defined as follows 4)5):

where is the mean of features in class k, is the mean

of all features regardless of their class assignments, and Pk

is the weight for class k. In general, Pk is empirically given

by Pk=Nk / N, where Nk is the number of features in class k.

There are several definitions of LDA objective functions.

Typical objective functions are the following 4)5):

where       is the determinant of the matrix X, and tr(X) is

the trace of the matrix X. A projection matrix is obtained to

maximize the objective function with respect to B. The opti-

mizations of Eqs. (1) to (3) result in the same projection 4).

In Eqs. (1) to (3), within-class scatter, S(W), between-class

scatter, S(B), and mixture scatter, S(M), may be employed in

place of , C(W), C(B) and C(M), respectively. These scatters

are given by S(W)=NC(W), S(B)=NC(B), and S(M)=NC(M). The

same solution is obtained even if , C(W), C(B) and C(M) in

Eqs. (1) to (3) are replaced with , S(W), S(B) and S(M), respec-

tively.

2. LINEAR�DIMENSIONALITY�REDUCTION
METHODS
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2.2 Heteroscedastic�Discriminant�Analysis

HDA uses the following objective function which incorpo-

rates individual weighted contributions of the class vari-

ances 7):

where Ck is a class covariance matrix in class k and is given

by

The solution to maximize Eq. (4) is not analytically

obtained. Therefore, a numerical optimization technique,

such as BFGS 13), is performed to maximize Eq. (4) with

respect to B.

2.3 Power�Linear�Discriminant�Analysis

We have proposed the following objective function, which

integrates LDA and HDA 8)14)†:

where m denotes a control parameter. We have referred to it

as power linear discriminant analysis (PLDA). Intuitively, as

m becomes larger, the classes with larger variances become

dominant in the denominator of Eq. (5). Conversely, as m

becomes smaller, the classes with smaller variances become

dominant. Thus, by varying the control parameter m, the

objective function can represent various objective functions. If

m is set to one/zero, the objective function corresponds to the

LDA/HDA objective function 14).

The following objective function is given as another defini-

tion of PLDA:

If m is set to zero, the objective function corresponds to het-

eroscedastic linear discriminant analysis 15), which is shown

in 14). One issue regarding PLDA in practice is how to select

the optimal control parameter m. In 16), the method for

selecting a sub-optimal control parameter is provided.

Recently, several linear dimensionality reduction methods

for multimodal data have been proposed in the machine

learning community 9)-12). Here, we review two methods:

locality preserving projection (LPP) 10) and local Fisher dis-

criminant analysis (LFDA) 11).

3.1 Locality�Preserving�Projection

Let A be a symmetric N×N matrix, which represents an

affinity between features 10). The (i,j)-element Ai,j of A is

the affinity between xi and xj. An affinity element Ai,j

becomes a large value if xi and xj are located close to each

other. Contrarily, Ai,j becomes a small value if xi and xj are

located far from each other. There are several different

definitions of A, e.g., the nearest neighbor 17), the heat ker-

nel 18) or the local scaling 19). The objective function of

LPP is defined as follows 10):

where is the identity matrix, and D is

a diagonal matrix whose (i,i)-element is given by

. Minimizing Eq. (7) with respect to B,

LPP seeks for a projection matrix B such that nearby data

pairs in the original space remain close in the projected

space. To ignore a trivial solution, i.e., B = 0, LPP imposes

the constraint (7). Thus, LPP is an unsupervised dimension-

ality reduction method preserving locality of features in the

original space.

3. Existing�Dimensionality�Reduction
Preserving�Locality�of�Data�Structure

† We let a function f of a symmetric positive definite matrix A equal , 
Udiag(f(λl),...,f(λn))UT=U(f(A))UT, where A=UAUT, U denotes the matrix of
n eigenvectors, and A denotes the diagonal matrix of eigenvalues, λi. 
We may define the function f as some power A.



デンソーテクニカルレビュー　Vol. 17　2012

−162−

3.2 Local�Fisher�Discriminant�Analysis

A supervised dimensionality reduction method preserving

locality of features has been proposed by Sugiyama 11)20)

and has been referred to as local Fisher discriminant analy-

sis (LFDA). LFDA combines the ideas of LDA (FDA) and

LPP.

Within-class scatter and between-class scatter explained in

Section 2.1 can be rewritten in a pairwise manner:

where

LDA searches for a projection matrix B such that data pairs

in the same class are close to each other and data pairs in

different classes are separate from each other. A more for-

mal interpretation of this is given in 11). Based on an affinity

matrix A and the pairwise expressions of the between /

within-class scatter, a local within-class scatter and a local

between-class scatter are defined as follows 11):

Both S(LW) and S(LB) put a weight on data pairs in the same

class, which is proportional to their affinity. The objective

function of LFDA corresponding to Eq. (3) is defined as fol-

lows 11)20):

LFDA searches for a projection matrix B such that nearby

data pairs in the same class remain close and the data pairs

in different classes are separate from each other; far-apart

data pairs in the same class are not forced to be close. Thus,

LFDA is a supervised dimensionality reduction method pre-

serving locality. If Aij is taken to be one for all in-class

pairs, LFDA corresponds exactly to LDA because S(LW) and

S
(LB)agree with S(W) and S(B), respectively. Thus, LFDA is an

extension of LDA to deal with multimodal data.

In the same fashion as the definition of LDA objective func-

tions, the following function could be defined as other

objective functions of LFDA:

where a local mixture scatter S(LM) is given by

and                   is given by

The optimizations of Eqs. (16) to (18) result in the same

projection.

Local within-class covariance, C(LW), local between-class

covariance, C(LB), and local mixture covariance, C(LM), can

be defined as C (LW)= ,C (LB)= and 
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C
(LB) = , respectively. The same solution is

obtained when S(LW), S(LB) and S(LM) in Eqs. (16) to (18) are

replaced with C(LW) , C(LB) and C(LM), respectively.

We first describe limitations facing the existing methods:

LDA, HDA, PLDA and LFDA. Next, in order to ease the

limitations, we propose two methods that extend HDA and

PLDA.

4.1 Limitations�of�Existing�Methods

While LDA is widely used to reduce dimensionality because

of its simplicity and effectiveness, it assumes that each class

shares common class covariance (i.e., homoscedasticity) 6).

Therefore, if this assumption is far from the real data, LDA

sometimes does not work well. In order to overcome the

limitation, HDA has been proposed, which can deal with

unequal class covariances (i.e., heteroscedasticity). These

two methods, however, sometimes does not work well

because the fixed weight of each class covariance in the two

methods cannot be necessarily suitable for any kind of data

14). So we previously proposed PLDA to generalize LDA

and HDA to control the class weights. Unfortunately, all

these methods implicitly assume that data are generated

from a single Gaussian distribution. Therefore, they cannot

deal with multimodal data appropriately. To deal with multi-

modal data, LFDA has been proposed as explained in

Section 3.2. It extends the between-class covariance and the

within-class covariance to preserve locality of data struc-

ture. Nevertheless, since LFDA is based on LDA that

assumes homoscedasticity, the effectiveness of LFDA may

be limited. 

In the following sections, we extend HDA that assumes het-

eroscedasticity using locality-preserving class covariances

that can deal with multimodal data. We also propose locali-

ty-preserving PLDA. These extensions can be expected to

yield better performance because they do not assume

homoscedasticity and can reduce dimensionality of multi-

modal data appropriately.

4.2 Local�Heteroscedastic�Discriminant�Analysis

To deal with multimodality using LDA, LFDA extends the

within-class and between-class covariances in the LDA

objective function to the local within-class and between-

class covariances, respectively. The HDA objective function

uses class covariances instead of a within-class covariance.

Therefore, we will extend class covariances, similar to the

local within-class and local between-class covariances. We

first rearrange a class covariance matrix in a pairwise man-

ner:

where

Similar to LDA, HDA also searches for a projection matrix

B so that data pairs in the same class are close to each other

and data pairs in different classes are separate from each

other. A more formal interpretation is given in 22).

A class covariance matrix can extend to preserve locality of

the data structure, similar to the extensions of S(W) and S(B).

Let us define a local class covariance matrix         as fol-

lows:

From Eqs. (14) and (23),  In

addition, and C(LW) satisfy C(LW)＝　　　　　　　.

Replacing class and the between-class covariance matrices

with local class and the local between-class ones, the objec-

tive function of HDA preserving locality is defined as fol-

lows:

We call it local HDA. If Aij is taken to be one for all in-class

4. Extensions�of�HDA�and�PLDA�to�Deal�with
Multimodality
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pairs, LHDA is proportionate to HDA because corre-

sponds to Ck. Since the only difference between Eqs. (4)

and (24) is the definitions of their covariance matrices, the

solution to maximize Eq. (24) with respect to B is obtained

through the same numerical optimization procedure of

HDA.

4.3 Local�Power�Linear�Discriminant�Analysis

As in the case of LHDA, using local class covariances 

, we extend a PLDA objective function as follows:

We call it local PLDA (LPLDA). From Eqs. (17) and (24),

LPLDA corresponds exactly to LFDA when m and LPLDA

corresponds exactly to LHDA when m→0. Since the only

difference between Eqs. (5) and (25) is the definitions of

their covariance matrices, the solution to maximize Eq. (25)

with respect to B is obtained through the same numerical

optimization procedure of PLDA 8)14). We can also extend

the other definition of PLDA as follows:

LPLDA corresponds exactly to PLDA when Aij is taken to

be one for all in-class pairs.

To obtain the optimal projections by LFDA, LHDA and

LPLDA,        , C(LW), C(LM) and C(LB) must be calculated in

advance. Throughout the paper, these covariance matrices

are called local covariance matrices. Each local covariance

matrix requires N2 times calculations from their definitions.

Therefore, their computational complexities are proportional

to N2. Since acoustic models in a speech recognition system

are generally trained using a large amount of speech data,

the value of N tends to become large, e.g., 106 to 109.

Hence, the computational costs of local covariance matrices

tend to be high.

5.1 Approximation�of�Local�Class�Covariances

For rapid calculation of local covariances, we first consider

an approximate computation of local class covariances. In

general, each class is represented as GMMs or HMMs in a

speech recognizer. Therefore, we assume that the distribu-

tion of each class is constructed from several separate clus-

ters. In addition, we approximate a local class covariance by

the average of covariances of the clusters. The relation

between a local class covariance and covariances of clusters

is similar to that between the within-class covariance and

class covariances. Then, we have

where Mk is the number of clusters in class k, Pk,m is the

weight of the m-th cluster in class k, and Ck,m is an m-th

cluster covariance in class k.         denotes an approximated

local class covariance matrix.          agrees with        when

the affinity matrix is defined as follows: Aij=1/Pk, if xi and

xj are assigned to the same cluster m in a class k, otherwise

Aij=0. If the number of clusters equals one,           corresponds to

Ck. To obtain Pk,m and Ck,m, we employ the Expectation-

Maximization (EM) algorithm. Since the computational

complexities of the E-step and the M-step in the EM algo-

rithm are proportional to the number of data, we can rapidly

calculate           by using Eq. (26).

5.2 Approximation�of�Other�Local�Covariances

C
(LW), C(LM), and C(LB) can be rewritten using        as fol-

lows:

The derivation of Eq. (28) is given in 22), Since the computa-

tional cost of is proportional to N2, these covariances

involve considerable computational costs.

To calculate these covariances rapidly, we replace all 

5. Approximate�Computations�of�Local
Covariances
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in Eqs. (27) - (29) by   :

and denote approximated

C
(LW), C(LM)and C(LB), respectively. Since the computational

costs of C(M) and Ck are proportional to the number of data,

there are no  N2 times calculations in Eqs. (30) - (32). Once

we calculate  C(M) and Ck, and estimate Pk,m and Ck,m

for         using the EM algorithm, we can calculate 

and immediately. Thus, the com-

putational costs are significantly reduced.

We conducted experiments on CENSREC-3 database 21),

which is designed as an evaluation framework for Japanese

isolated word recognition in real in-car environments.

Speech data were collected using two microphones: a close-

talking (CT) microphone and a hands-free (HF) micro-

phone. We only used the speech data collected using a CT

microphone. For training of HMMs, a driver's speech of

phonetically-balanced sentences was recorded under two

conditions: while idling and driving on city streets under a

normal in-car environment without air-conditioner noise. A

total of 14,050 utterances by 293 drivers (202 males and 91

females) were recorded with a CT microphone. For evalua-

tion, we used driver's speech of isolated words recorded

with a CT microphone under three different conditions: an

in-car environment without A / C noise (normal), with low

fan-speed noise (fan low), and with high fan-speed noise

(fan high). Originally, the aim of feature transformation is to

reduce redundant information and not to treat mismatched

conditions explicitly. However, the transformations should

not compromise the system's robustness and so we also

investigate robustness under different noise conditions.

Although one can use various noise conditions, to make the

problem simple, we selected fan noise for the investigation.

There are 2,646, 2,637 and 2,695 speech utterances for nor-

mal, fan low and fan high conditions, respectively. The

speech signals for training and evaluation were both sam-

pled at 16 kHz.

6.1 Experimental�setup

For an evaluation procedure, we followed the CENSREC-3

baseline scripts except that fifty similar-sounding words

were added to the vocabulary (total 100 words) to make the

recognition task difficult. The acoustic models consist of tri-

phone HMMs. Each HMM has five states, and three of them

have output distributions. Each distribution is represented

with 32 mixture diagonal Gaussians. The total number of

states with the distributions is 2,000. The baseline perform-

ance was calculated with 39 dimensional feature vectors that

consist of 12 MFCCs and log-energy with their correspon-

ding delta and acceleration coefficients. Eleven successive

frames, whose center is the current frame, were used to

obtain dynamic coefficients because delta and acceleration

window sizes were three and two, respectively. At the

beginning and end of the speech, the first or last vector is

replicated five-fold. Frame length is 20 ms and frame shift is

10 ms. In the Mel-filter bank analysis, a cut-off is applied to

frequency components lower than 250 Hz. Throughout the

experiments, cepstral mean normalization is not applied to

the features ǂ.

6.2 Feature�Transformation�Procedure

Feature transformation was performed using LDA, HDA 7),

PLDA 8), LFDA 11), LHDA and LPLDA for spliced fea-

tures. Eleven successive frames (143 dimensions), whose

center is the current frame, were reduced to 20, 30 and 39 to

investigate the effectiveness of the feature transformation

methods. At the beginning and end of the speech, the first or

last vector is replicated five-fold. In PLDA and LPLDA, we

used the limited-memory BFGS algorithm as a numerical

optimization technique, and their control parameters  were

experimentally selected. The LDA transformation matrix

was used as the initial gradient. In LFDA, LHDA and

LPLDA, the number of mixtures was four for each class,

while the number of mixtures was one for the classes that

6. Experiments

ǂ In CENSREC-3, there is no difference in the recording conditions between
the training data and the evaluation data from the standpoint of convolutional
noises such as reverberation. Therefore, the effectiveness of cepstral mean
normalization is limited. In practice, preliminary experimental results have
showed that cepstral mean normalization did not improve recognition performance
in almost all the cases.
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have training data of less than one percent of the total. In

addition, to obtain projection matrices by LFDA, LHDA

and LPLDA, we employed an approximate computation

scheme for calculating covariances. To assign one of the

classes to every feature vector, HMM state labels were gen-

erated for the training data by a state-level forced alignment

algorithm using a well-trained HMM system. The number of

classes was 40.

6.3 Results

Experimental results are presented in Table�1 to Table�3.

The noise condition for the evaluation data used in Table�1

matches that for training data. The evaluation data used in

Table�2 and the data used in Table�3 contain low air-con-

ditioner noise and high air-conditioner noise, respectively.

These noises are not contained in training data.

We first discuss the results of the feature transformation

methods when the size of a reduced space is 39 (i.e., p＝

39). The size is equal to that of baseline. Table�1 showed

that the locality-preserving dimensionality reduction meth-

ods consistently yielded better performance than the tradi-

tional methods. This result suggests that projected features

using the locality-preserving methods have higher separabil-

ity among acoustic classes than those using the traditional

methods because the locality-preserving methods can con-

sider multimodality of data. Especially, LPLDA yielded the

lowest word error rate (WER) among all dimensionality

reduction methods. Table�2 showed a similar tendency to

Table�1. The locality-preserving dimensionality reduction

methods also yielded better performance. These results were

obtained from the fact that the difference between a normal

condition and a fan low condition is slight because A/C

noise with a low fan-speed is small. In addition, the combi-

nations of heteroscedasticity and locality-preservation

worked well. On the other hand, Table�3 showed a different

tendency from the others. The feature transformation meth-

ods excluding LPLDA gave worse performance than at

baseline (MFCC+Δ+ΔΔ). In general, the degree of con-

fusability of acoustic features among different classes would

change when the noise in training differs considerably from

that in evaluation. Therefore, a feature transformation esti-

mated under a normal noise environment in training did not

necessarily work well under a fan high noise environment in

evaluation. Nevertheless, LPLDA kept comparable perform-

ance with the baseline whether or not the noise condition in

evaluation matches when training because it would trans-

form features that have sufficiently high separability among

different classes even in a mismatch noise condition.

Next, we discuss the results of the feature transformation

methods when p＝20 and p＝30§. As shown in Table�1

and Table�2, under matched and almost matched noise con-

ditions between training and evaluation, the optimal dimen-

sions of most feature transformation methods are lower than

39. On the other hand, Table�3 showed that all methods

degraded recognition performance under a mismatched

noise condition when the dimensions were relatively small.

These results imply that feature transformation methods

might obtain lower dimensions in matched conditions,

whereas in mismatched conditions, redundant information

can contribute to the improvement of recognition perform-

ance. Table�1 to Table�3 also showed that while the pro-

posed methods did not necessarily yield comparable per-

Table 1 Word error rates(%)under a normal condition.

Table 2 Word error rates(%)under a fan low condition.

Table 3 Word error rates(%)under a fan hign condition.



特　　集

−167−

formance of the other methods when p＝20, they consis-

tently yielded the lowest word error rate when 

In this paper, we proposed two-dimensionality reduction

methods; HDA preserving the local structure of the data

(LHDA) and PLDA preserving the local structure (LPLDA),

to reduce dimensionality of multimodal data appropriately.

In general, to obtain the optimal projections by the locality-

preserving methods, considerable computational time is

required. In order to overcome this problem, we proposed an

approximate calculation scheme. Experimental results

showed that the locality-preserving dimensionality reduction

methods yielded better performance than traditional ones,

especially under matched noise conditions. In particular,

LPLDA outperformed the others whether or not the noise

condition in evaluation matched that in training.

The study presented was conducted using the CENSREC-3

database developed by the IPSJ-SIG SLP Noisy Speech

Recognition Evaluation Working Group.
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