特集 リグニンのエポキシ化条件の最適化と熱硬化性樹脂への応用* Optimization of Synthetic Conditions of Epoxidized Lignin and it's Application to Biomass-based thermosetting resin 奥平浩之 Hiroyuki OKUHIRA Honami NAITO Akio TAKAHASHI Toshiyuki OYAMA

We report synthesis and utilization of epoxy resin derived from lignin (L), which is classified as a plant biomass with a polyphenol structure. L is considered to be a suitable alternative to petroleum-derived phenolic resins used for preparation of epoxy resins. Thus in this study, we synthesized epoxidized lignin (EL) by the reaction of L with epichlorohydrin and cured the resulting EL by using phenol novolac (PN) as a curing agent. At first, the effect of phase-transfer catalysts on epoxidization was examined by model reaction using coniferyl alcohol (CA). CA was reacted with epichlorohydrin by a two-step process in the presence of the catalysts, and it was found that the catalysts composed of ammonium cations with alkyl chains longer than ethyl group were suitable for epoxidization. Then, L was epoxidized by using Tetraethylammonium chloride as a phase-transfer catalyst. As a result of optimization of synthetic conditions, EL with low epoxy equivalent weight and softening point was obtained in good yield. The resulting EL was cured with PN to give a cured resin containing about 75wt% of biomass-derived component.

Key words: Lignin, Epoxy resin, Epoxidization, Biomass, Thermosetting resin

1. 緒言

近年,化石資源の枯渇,地球温暖化を背景とする環 境意識の高まりを受け,「バイオマス」に注目が集ま っている.バイオマス資源をポスト石油資源にするた めには,芳香族系素材,脂肪族系素材の持続的確保が 必須である.リグニンは,生物系資源の中で量,質と もにポスト石油系芳香族化合物としてのポテンシャル を有する木質バイオマスである¹⁾.

リグニンとは、木材を構成する三大成分の一つであ るが、紙・パルプなどに広く利用されている他の主要 成分であるセルロース系素材と比較して、燃料や分散 剤などとしての利用以外には、有効な利用法が未だ開 発されていない²⁾⁻⁵⁾.リグニンは、三次元に入り組ん だ複雑かつ不規則な構造体である(Fig. 1).しかし、 化学構造中に多くのフェノール性水酸基を有すること からフェノール樹脂の代替材料となり得るポテンシャ ルを秘めている.

一方, エポキシ樹脂は, 多官能性エポキシ樹脂化合物と硬化剤の反応により三次元網目構造体を形成して

硬化する.この硬化物は,機械強度,耐熱性,接着性 等において優れた特徴を有する材料として知られてお り、これらの特性を活かして土木・建築分野での高強 度接着剤として,或いは電気・電子分野における封止 材、航空分野でのFRPマトリックス樹脂等としても利 用されている.また,主剤となるエポキシ樹脂は一分 子中に二個以上のフェノール性水酸基を有する化合物 をエピクロロヒドリン (ECH) とアルカリ条件下にて 反応させることにより得られる.従って、ポリフェノ ールであるリグニンは硬化剤としてだけでなく、エポ キシ樹脂としてのポテンシャルも秘めている.よって, エポキシ化リグニンをリグニンで硬化させることが出 来れば、理想的には100%に近いバイオマス由来資源 から成るエポキシ樹脂硬化物が作製可能と考えられ る.これまでの研究で、リグニンがエポキシ樹脂の硬 化剤として利用可能であり、さらにリグニンをエポキ シ化することでエポキシ樹脂としても利用可能である ことを見出している⁶⁾⁷⁾. 今回, リグニンのエポキシ 化について報告する.

前述のとおり、一般的にフェノール性化合物をアル

カリ存在下でECHと反応させることでエポキシ基を導入する.しかし、リグニンのように剛直な構造を有するエポキシ樹脂は、この方法ではエポキシ化とECHとの重合により高分子量化し、エポキシ樹脂の合成が困難である.著者らは、相間移動触媒存在下でECHと反応させ、生成したクロロヒドリン付加体を低温でアルカリにより閉環させる二段階方法がリグニンのエポキシ化に有効であることを確認した⁹⁾.しかし、得られるエポキシ樹脂は軟化温度が高いため溶融流動性が得られず、樹脂硬化物の作製が困難であった⁶⁾.

そこで本研究では、高分子量化を抑え、より低軟化 温度のエポキシ化リグニンを得ることで材料としての 可能性を見出す目的で合成条件の最適化を検討した. まずリグニンのモデル化合物としてコニフェリルアル コールを用いたエポキシ化により最適触媒構造を明ら かにした.次にその条件をもとにリグニンをエポキシ 化した.そして合成したエポキシ化リグニンを,硬化 剤としてフェノールノボラック、硬化促進剤として1 ーシアノエチルー2-エチルー4-メチルイミダゾール (2E4MZ-CN)を用いて、加熱加圧下、プレス硬化す ることで硬化物を作製した.

Fig. 1 Supposed structure of lignin

2. 実験

2.1 試薬

モデル反応にはコニフェリルアルコール (CA) (ALDRICH社製), ジヒドロコニフェリルアルコール

(DCA) (東京化成(株)製), エピクロロヒドリン (ECH) (東京化成(株)製), 水酸化ナトリウム (NaOH) (和 光純薬(株)製) を用いた.相間移動触媒としてテトラ メチルアンモニウムクロリド (TMAC), テトラメチ ルアンモニウムブロミド (TMAB), テトラエチルア ンモニウムクロリド (TEAC), テトラプロピルアンモ ニウムクロリド (TPAC), テトラn-ブチルアンモニウムブ ロミド (TBAB), テトラn-ブチルアンモニウム硫酸水 素塩 (TBAHS) (全て東京化成(株)製) を用いた.

リグニンのエポキシ化には草本系リグニン(L)(ハ リマ化成(株)製),エピクロロヒドリン(ECH)(東京 化成(株)製),TEAC(東京化成(株)製),NaOH(和 光純薬(株)製),酢酸(和光純薬(株)製),*n*-ヘキサン (和光純薬(株)製),ジエチルエーテル(和光純薬(株) 製)を用いた.

水酸基当量測定には無水ピリジン (ALDRICH社製), 無水酢酸 (和光純薬(株)製), エポキシ当量測定には 1,1,2,2-テトラクロロエタン (TCE) (和光純薬(株) 製)を用いた.

硬化物作製には、エポキシ化リグニン(EL)、ノボ ラック型エポキシ樹脂(EPN)(日本化薬(株)製, RE-305[®];エポキシ当量173),硬化剤としてフェノールノ ボラック(PN)(DIC(株)製、フェノライト[®]TD-2131;水酸基当量103),硬化促進剤として1-シアノエ チル-2-エチル-4-メチルイミダゾール(2E4MZ-CN) (四国化成(株)製),溶媒としてテトラヒドロフラン (和光純薬(株)製)を用いた.

2.2 測定

構造確認は核磁気共鳴スペクトル (¹H-NMR) (BRUKER社製核磁気共鳴装置DRX-300 (300MHz)), 赤外分光分析 (FT-IR) (PerkinElmer社製, Spectrum one) にて行った.

分子量は、ゲル浸透クロマトグラフィー (GPC) (東ソー(株)製SD-8022,検出器:東ソー(株)製RI-8021, カラム:TSKgel G2000H_{HR},溶離液:THF,溶出速度 1.00mL/min,ポリスチレン換算)を用いて測定した. なおリグニンは、水酸基をアセチル化してGPC測定を 行いその補正値を分子量とした.

リグニン及びエポキシ化リグニンの軟化点は,熱機 械分析 (TMA) ((株)島津製作所製TMA-60,昇温速度: 5℃/min,荷重:1.0g,窒素気流(流量:20mL/min)) により調査した. 硬化物の成形温度は、示差走査熱量分析計(DSC) ((株)島津製作所製DSC-60,昇温速度:10℃/min,窒 素気流(流量:50mL/min))により決定した.硬化物 の熱特性は、熱分解温度を熱重量分析(TGA)((株)島 津製作所製TGA-50,昇温速度:10℃/min,窒素気流 (50mL/min)),熱膨張率をTMA((株)島津製作所製 TMA-60,昇温速度:5℃/min,荷重:1.0g,窒素気流 (流量:20mL/min)),そしてガラス転移温度及び架橋 密度を動的粘弾性分析(DMA)(SIIナノテクノロジー (株)製DMS-6100型(昇温速度:5℃/min,振動数:1Hz, 空気下))を用いて調査した.

水酸基当量については、無水酢酸-ピリジン法を用 いた滴定では水酸化カリウムエタノール溶液を滴下し た際に沈殿物が生じ、終点の判断が困難となったため、 水酸基をアセチル化した後に¹H-NMR測定により算出 した.5mLバイアルに試料0.10gを量り取り窒素置換し た後に無水ピリジン1.0mLに溶解させ、そこに無水酢 酸1.0 mLを加えて撹拌しながら室温で24時間反応させ た.反応溶液を冷水に再沈殿したのち、吸引ろ過によ り回収した固体を60℃で一晩減圧乾燥し、アセチル化 物を得た.アセチル化物と、内部標準として用いる1、 1,2,2-テトラクロロエタン(TCE)とをそれぞれ精秤 し、重クロロホルムに溶解させて¹H-NMR測定し、次 式(1)を用いて水酸基当量(HEW)を算出した.

HEW [g/eq] = 3/2 × $I_{\rm HEP} I_{\rm He}$ × $W_{\rm Dis}/W_{\rm HEE}$ × $M_{\rm HEC}$ - 42.04 (1)

ここで、*ITCE*: TCEの積分強度、*IOAc*: アセチル基の積
 分強度、*WOAc*: アセチル化物の質量、*WTCE*: TCEの質
 量、*MTCE*: TCEの分子量である.

エポキシ当量については、塩酸-ジオキサン法を用 いた滴定法では溶液が黒色であり、終点の判断が困難 であったため文献⁸⁾ に従い¹H-NMRを用いて以下に示 す方法で算出した.エポキシ化物とTCEを精秤し、重 クロロホルムに溶解させて¹H-NMR測定を行い、次式 (2)を用いてエポキシ当量(EEW)を算出した.

 $HEW [g/eq] = I_{TCT}/I_{epaxy} \times W_{epaxy} W_{TeT} \times M_{TCT}$ (2)

ここで, *Iepoxy*:エポキシ基の積分強度, *Wepoxy*:エポキ シ化物の質量である.

2.3 エポキシ化コニフェリルアルコール (ECA) の合成

CA0.2g(1.1×10⁻³mol)とECH2.06g(2.2×10⁻²mol), TMAC0.030g(4.4×10⁻⁴mol, CAのOH基に対し1/4倍量), イオン交換水0.001g(8.8×10⁻⁵mol, TMACに対して1/5 倍量)を仕込み,窒素雰囲気下80℃で5時間反応させ た.次に系を10℃以下に冷却した後に20wt%水酸化ナ トリウム水溶液4.45gをゆっくりと滴下し,10℃以下を 保ちながら6時間反応させた.反応溶液を塩化メチレ ンで抽出し,イオン交換水で有機層を洗浄した後,無 水硫酸マグネシウムで乾燥し,溶媒をエバポレートし てエポキシ化コニフェリルアルコール(ECA)を得た (収量0.19g).同様に触媒のTMACに代えてTMAB, TEAC, TPAC, TBAC, TBAB, TBAHSを用いてそれ ぞれエポキシ化し,相間移動触媒による反応率の違い を調査した.

さらに別のモデル化合物としてジヒドロコニフェリ ルアルコール (DCA) も同様にエポキシ化した.

2.4 エポキシ化リグニン(EL)の合成

L5.00g (水酸基mol=0.0256mol, HEW=195g/eq.) と ECH47.44g (0.5120mol, LのOH基に対して20倍量), TEAC1.06g (6.4×10⁻³mol, LのOH基に対し1/4倍量), イオン交換水0.023g(1.3×10⁻³mol, TEACに対して1/5 倍量)を仕込み,窒素雰囲気下80℃で8時間反応させ た.次に系を10℃以下に冷却した後に20wt%水酸化ナ トリウム水溶液24.60gをゆっくりと滴下し、10℃以下 を保ちながら一晩反応させた.反応終了後,20wt%酢 酸水溶液30.75gで系内を中和した.反応溶液を塩化メ チレンで抽出し、イオン交換水で有機層を洗浄した後、 無水硫酸マグネシウムで乾燥した.この溶液を20倍量 のヘキサンジエチルエーテル混合溶媒(7:3)に再沈 殿させ、沈殿物を60℃で一晩減圧乾燥し、収量3.98gで エポキシ化リグニン (EL) を得た. 同様にTBAC, TMACをそれぞれ相間移動触媒として用いて合成し、 EL (TBAC), EL (TMAC) を得た.

2.5 フェノールノボラック硬化ELの作製および熱 的特性評価

TEACで合成し得られたエポキシ化リグニン(EL) と硬化剤PNを当量比1:1となるようにテトラヒドロフ ランに溶解させた後にエポキシ樹脂に対して0.5phrの 硬化促進剤2E4MZ-CNを溶解させた.この溶液から溶 媒を除去した後に,得られた樹脂混合物を注型して 130℃で予備加熱した後, 圧縮成型にて加圧(15MPa) し, 加熱条件150℃/2h+180℃/3hで硬化させた.

ELの比較材として,ノボラック型エポキシ樹脂 (EPN)をエポキシ樹脂,PNを硬化剤として用いた硬 化物を150℃/3h+180°C/5hの硬化条件で作製した.

3. 結果および考察

3.1 モデル反応によるエポキシ化条件の最適化

相間移動触媒として用いた四級アンモニウム塩の炭 素鎖長と対アニオンの種類がCAのエポキシ化に及ぼ す影響について調査した. 生成物であるエポキシ化 CAの¹H-NMRスペクトルを**Fig. 2**に示す. 2.6-2.9ppmに エポキシ基由来のシグナルが観測された. このシグナ ルは二種類のエポキシ基の存在を示唆しており、CA が有するフェノール性水酸基、アルコール性水酸基が 共にエポキシ化されたことが伺える.フェノール性水 酸基の反応率は100%である一方で、アルコール性水 酸基の反応率は触媒によって異なることが明らかとな った.¹H-NMRスペクトルの積分強度比よりアルコー ル性OH基の反応率を算出し、結果をFig.3にまとめた. その結果,対アニオンによる反応性の違いはほとんど 見られなかった.一方、炭素鎖長については、メチル 基とエチル基以上とではアルコール性OH基の反応率 が大きく異なることが示された. 触媒による反応率の 違いは、反応溶媒であるECHに対する溶解性に起因し ていると推測される.

また,詳細は省略するが,別のモデル化合物として 二重結合を有さないジヒドロコニフェリルアルコール (DCA)を用いてエポキシ化し,同様にエポキシ化率 を算出したところ,類似した傾向を示した.

Fig. 2 ¹H-NMR spectra of epoxidized coniferyl alcohols (ECAs) (a) TBAC, (b) TEAC and (c) TMAC (CDCl₃, r. t.)

Fig. 3 Relationship between number of carbon in the catalysts and conversion of alcoholic OH group in CA

3.2 エポキシ化リグニン (EL) のキャラクタリゼ ーション

従来の合成方法で高分子量体となる理由の一つとし て,精製工程において再沈殿溶媒として用いるイソプ ロパノール(IPA)に一部生成物の低分量体が溶解す ることが考えられた.そこで再沈殿溶媒をIPAからへ キサンとジエチルエーテルの混合溶媒(混合比7:3) に変更したところ,収率が50%から75%まで改善され た.しかし,この混合溶媒には相間移動触媒はほとん ど溶解しないため,途中工程の抽出洗浄の段階で触媒 を除去する必要がある.

合成したELのキャラクタリゼーションは、¹H-NMR, FT-IR, TGA, TMA, GPCにより行った. ELの¹H-NMRスペクトルをFig. 4に, FT-IRスペクトルをFig. 5 に示し, TMA測定結果をFig. 6に示した. また, TBAC, TEAC, TMACを用いて合成したEL, L, そして従来 の方法¹⁰⁾¹¹⁾で合成したEL (previous)の軟化点(Tsp), 5%, 10%熱重量減少温度(Td5, Td10), 800℃における残 渣, 重量平均分子量(Mw),多分散度(Mw/Mn)お よび水酸基当量(HEW)をTable 1に示した. なおEL (previous)は,相間移動触媒TBAB存在下で,開環反 応80℃/8h,閉環反応10℃以下/10hで二段階合成した後, IPAに再沈殿させることで精製し得られる.

Fig. 4より2.6~2.9ppm付近にグリシジル基由来のシ グナルが観察された.また,Fig. 5より910cm⁻¹にエポ キシ基由来の特徴的な吸収も観察され,目的のELが合 成されていると判断できる.EL(TBAC)の1ppm付近 にTBAC由来のシグナルが観測され,触媒の残存が伺 えた.GPCにより測定したELのMwは1850であり,こ れはLの重量平均分子量から算出されたMwの理論値 1970と比較して近い値を示している.この結果より,

Sample	Cat.	$M_{\bullet}^{\rm B}$	$M_{\bullet}{}^{\rm D}$	Tæ ^a I℃I	T ₄₅ ³⁰ %	T ₁₀ ³⁾ [%]	Char yield ^{3, 4} [%]	HEW, EEW ⁴¹	Yield [%]
I.	-	740	1530	137	224	266	41.7	195	-
EL.	TBAC	1030	2130	78	252	280	35.5	424	75
	TEAC	940	1850	99	315	343	39.0	239	75
	TMAC	820	1500	99	308	338	35.4	247	74
EL(previous)	TBAB	1100	2250	132	266	335	39.5	389	50
13 Building of the	The back and	n a standa	and distances	dia Dia	23.00 × 27.00	A Chineselle	er metter EPC Sector	andra Nol.	

Table 1 Properties of L and ELs

3) By TGA (Heating rate: 10°C/min, under No.) 4) At 800°C 5) By ¹H-NMR (CDCb, r.t.)

合成中に高分子量化はほとんど起きていないことが示 唆された.また,ELのエポキシ当量は239g/eq.となっ た.**Table 1**に示したELのTspは,水酸基にエポキシ基 が導入されたことで水素結合による物理的相互作用が 低減し,Lの137℃よりも38℃低い99℃を示した.しか しEPNが室温で液状であるのに対してELは室温で固体 であった.これはEPNと比較してELが5倍以上のMwを 有すること,そして剛直な構造が原因として考えられ る.またTd5は300℃を超え,エポキシ化することで耐 熱性が改善されたことを確認した.

EL (TBAC) はEL (TMAC), EL (TEAC) と比較 してTa5, TSPが低い値を示したが,これは残存触媒に 起因する.一方,EL (TMAC) とEL (TEAC) の諸特 性に大きな違いは見られなかった.3.1節で説明したモ デル反応の結果より,触媒のアルキル鎖がエチル基以 上であれば,対アニオンの種類に関わらずエポキシ化 が効率的に進行することが確認された.しかし,Lの エポキシ化では,触媒が抽出・水洗操作で効率的に除 去し得ることが重要である.よって,アルキル鎖長が 長すぎず水への溶解性が良いTEACをLのエポキシ化の 最適触媒として選定した.

またEL(TEAC)を,従来の方法¹⁰⁾¹¹⁾で合成した EL(previous)と比較すると,合成条件の最適化によ りTspが33℃低く,より低分子量かつ高収率で得られ た.これは相間移動触媒としてTEACを選定したこと, 及び再沈殿溶媒をイソプロパノール(IPA)からへキ サンエーテル混合溶媒(7:3)に変更したことで, IPAに溶解し得る低分子量ELが回収可能となったこと に起因すると考えられる.さらにEEWはEL(previous) と比較して約150g/eq.と小さな値を示しており,より 多くのエポキシ基が分子中に存在していることを示し ている.

Fig. 4 ¹H-NMR spectrum of epoxidized lignins (ELs) (a) EL (TEAC) and (b) EL (TBAC) (CDCl₃, r. t.)

Fig. 6 TMA charts of lignin (L) and epoxidized lignins (ELs)

Table 2 Properties of the cured resins ¹⁾

Sample	Epoxy resin	т, ²⁹ [°С]	Crosslink density ^{2], 2]} [kmol/m ³]	т _ы » [°С]	Tan ⁴ [ՐԸ]	Char yield ⁴⁶²⁾ [%]	CTE ^e [%]	Biomass content	Remark
Cared EL	EI.	155	3.0	305	345	33.2	70	71	Opaque
Control ²⁾	EPN	145	1.7	396	408	24.5	62	0	Transparent

Curing agent: PN, Accelerator: 286302-CN 2) By DNA (Heating rate: 5°C /min, under air)

3) T=Tg+40[K] 4) By TGA (Heating rate: 10[°]C/min, under No) 5) At 800[°]C

6) By TMA (Heating rate: 5°C/min, under Nt) 7) Curing condition: 150°C/3h+180°C/5h

3.3 フェノールノボラック硬化ELの作製および熱 的特性評価

バイオマス由来エポキシ樹脂ELをフェノールノボラ ック (PN) で硬化させて得られるPN硬化EL (Cured EL) を作製し, ELのエポキシ樹脂としての特性を評価した. 熱的特性試験の結果をTable 2,動的粘弾性試験の結 果をFig. 7に示し、ノボラック型エポキシ樹脂 (EPN) をPNで硬化させて得られるControlと比較した.

TGAから得られるTa5は、石油由来エポキシ樹脂で あるEPNを用いた硬化物であるControlと比較して約 90℃低い値を示した.これは、ELが熱的に分解されや すいアルキル部位をより多く含んでいることに起因す る.一方で,800℃における残渣は33%を示し、これ は熱分解過程で炭化層残渣を形成するリグニンユニッ トを硬化物中に多く含んでいること、または硬化反応 が不十分であることが考えられる. また, Cured ELの Tgは155℃を示し、さらにDMA測定結果においてゴム 状領域の貯蔵弾性率から求めた架橋密度は3.0 kmol/m³ となり、Tg,架橋密度共にControlと同等もしくはそれ 以上の値を示した. Cured ELの $tan \delta$ のピークがControl よりもブロードになっているが、これは本系において はELの重量比が7割程度を占めていることから、バイ オマス由来エポキシ樹脂自身の嵩高く複雑な架橋構造 に由来していると考えられる.

Fig. 7 DMA charts of the cured resins (5°C/min, under air)

4. 結論

従来のエポキシ化条件で得られるエポキシ化リグニ ンの軟化温度が高いという課題に対し,モデル反応に よる触媒構造の最適化及びリグニンのエポキシ化にお ける合成条件の検討により,エポキシ化リグニンの軟 化温度を低減した.モデル反応より,相間移動触媒に よる反応性の違いが確認され,反応性に加えて精製段 階での除去が容易なTEACを最適触媒として適用した. 実際に最適化した条件でリグニンをエポキシ化したと ころ,より多くエポキシ基を有するエポキシ化リグニ ンが得られた.また生成物をより低分子量化すること で軟化温度を約40℃低減できた.そして得られたエポ キシ化リグニンをフェノールノボラックで硬化させた 結果,石油由来硬化物と同等のガラス転移温度を有す る硬化物が得られた.

<参考文献>

- "木質系有機資源の新展開",船岡正光 監修,シ ーエムシー出版 (2005)
- C. I. Simionescu, V. Rusan, M. M. Macoveanu, G. Cazacu, R. Lipsa, C. Vasile, A. Stoleriu, and A. Ioanid, *Compos. Sci. Technol.*, 48, 317 (1993)
- C. Asada, Y. Nakamura, and F. Kobayashi, *Biochem.* Eng. J., 23, 131 (2005)
- S. Hirose, T. Hatakeyama, and H. Hatakeyama, Macromol. Symp., 197, 157 (2003)
- G. Sun, H. Sun, Y. Liu, B. Zhao, N. Zhu, and K. Hu, Polymer, 48, 330 (2007)
- 6)角田知己,大山俊幸,高橋昭雄,河野剛,ネット ワークポリマー,33,184 (2012)
- 7)川野裕介,大山俊幸,高橋昭雄,中村嘉利,ネットワークポリマー,34,77 (2013)
- 8) J. G. Dorsey, G. F. Dorsey, A. C. Rutenberg, L. A.

材

料

技

術

Green, Anal. Chem., 49, 1144 (1977)

- 9) 張偉, 飯島孝雄, 福田和吉, 友井正男, ネットワ ークポリマー, 18,59 (1997)
- 10)津田祥平,大山俊幸,高橋昭雄,岡部義昭,香川
 博之,山田真治,岡部洋治,高分子論文集,67,497 (2010)
- 11) 中川佳織,大山俊幸,高橋昭雄,中村嘉利,岡部 義昭,香川博之,ネットワークポリマー,32,122
 (2011)

奥平 浩之
 (おくひら ひろゆき)
 材料技術部 機能複合材料室
 博士(工学)
 接着材料に関する研究・開発に
 従事

<著 者>

内藤 穂波 (ないとう ほなみ) 横浜国立大学大学院工学府 新規熱硬化性樹脂の開発に 従事

高橋 昭雄 (たかはし あきお) 横浜国立大学 安心・安全の 化学研究教育センター 客員教授 工学博士 熱硬化性樹脂の高性能化,エレ クトロニクス実装用高分子材料 開発に従事

大山 俊幸
 (おおやま としゆき)
 横浜国立大学大学院
 工学研究院 准教授
 博士(工学)
 新規機能性ポリマー及び高性能
 ポリマーの開発に従事