
1 32

DENSO TECHNICAL REVIEW Vol.25 2020

特
　
　
　
集

Software service economy has been rapidly expanding

and service providers are doing DevOps by leveraging

public clouds and cloud native OSS. Thus, it is

said that ‘Kubernetes is becoming the Linux of

the cloud’ and Kubernetes related eco-system are

becoming more mainstream1). In the automotive

industry, vehicles are connected to the cloud and

the demand for development of mobility services is

growing rapidly. Responding appropriately to this

demand is thus, a concern for all big mobility service

providers . As mobility service users’demands are

ever-changing, developers require a flexible and agile

development environment, like the cloud native

approach. However, there are some technical barriers

tin introducing cloud native approach to vehicles; 1)

Vehicle embedded software skill sets are different from

those of cloud service software, 2) Limited vehicle

edge computing resources and lack of scalability, 3)

Vehicle constraints; Unstable LTE/3G connections,

limited power supply when engines are switched off,

CAN BUS data decoding /encoding and embedded

software environment challenges.

To solve these technical issues, we developed

‘misaki’, end to end mobility service development,

deployment and operation framework. It is a cloud

native framework for vehicle/network edge and cloud

environment. We defined each vehicle/network edge

as a small cloud. By breaking down and deploying

Kubernetes functions on the edge and cloud by

resource availability, using functionalities of service-

mesh and digital twin technology, it seamlessly

integrates vehicle/network edge and cloud. Mobility

service developers are enabled to develop, test and

deploy their software modules/applications easily.

Deploy Anywhere: An End to End Kubernetes
based Mobility Service Framework
Seiichi KOIZUMI

We have been developing a mobility edge/cloud service framework called ‘misaki’, which integrates vehicle
edge, network edge (e.g. MEC) and cloud seamlessly. It also deploys and operates mobility service modules
on this heterogeneous environment. Service developers are able to develop their apps on cloud, test it
on virtual vehicle environment and deploy it anywhere. It also removes the concern for differences of
environment (e.g. vehicle edge/cloud locational differences and vehicle edge such as each type of vehicle
has differences of computing resources)

 Key words :
edge computing, connected vehicle, MaaS, IoT, Orchestration, Service Mesh

1. Introduction

Yong JUN KAI Aman GUPTA

33 34

DENSO TECHNICAL REVIEW Vol.25 2020

特
　
　
　
集

services, DriveNow, ParkNow and ChargeNow and

these services utilizes cloud native approach9). The

Ford Motor Company also defined “ Cloud Native

Reference Application” framework10) to share best

practices of mobility service.

3.1 Overview
Our misaki framework defines three layers through

vehicle/network edge and cloud:

● �Appl ica t ion proces s ing layer : Deve loping

applications as containers on the cloud and

deploying it to vehicle edge without being affected

by the vehicle’s resource constraints.

● �Service mesh network layer: It connects or

disconnects containers based on service mesh

controller. It also enables vehicle-to-cloud container

migration by control traffic and manage IP

addresses.

● �Distributed data layer (under development):

containers is able to retrieve/register data from any

distributed data cache on vehicle/network edge and

cloud.

To cover various requirements of mobility software

service , such as minimizing uploading cost ,

maximizing data processing throughput and real time

processing, misaki orchestrates these three layer’s

resources (computing resource, network resource and

storage resource) allocation and deployment for three

locations (vehicle edge, mobile edge and cloud).

3.2 T e c h n i c a l F e a t u r e s a n d P r o t o t y p e
Architecture

To follow the latest software development practices,

the framework must allow the mobility service

developer to have full ownership of their application.

They can choose their language, libraries, and software

environment to build the application and they can

fully control the application lifecycle. This increases

developer productivity and scalability. Developer

productivity is one of the most important factors

for a successful service development. Furthermore,

scalability in software development enhances business

scalability and agility. Therefore, misaki is carefully

designed with openness in mind and it is based on

robust and popular OSSs like Kubernetes and Envoy.

m i s a k i p r o t o t y p e p r o v i d e s t h e f o l l o w i n g

functionalities;

● �End to end (E2E) orchestrator: It provides unified

operation of design, development, deployment and

updates of containers on vehicle/network edge and

cloud environment.

● �Vehicle service mesh: Split application logic

layer and network layer and orchestrate the

network traffic in operation phase between service

components (containers).

3. E2E Deploy Anywhere Framework,
misaki

Fig. 1　End to end deploy anywhere framework

2. Related Works

leverage are defined in IEEE P24132), ITU-T Y.20603).

This framework accelerates service developments

by smoothly collecting data from sensor devices,

comprehending s i tuat ions and orchestrat ing

applications appropriately4). Public cloud’s IoT services

(e.g. AWS IoT, Azure IoT) provide fundamental

functions of this framework. Vehicles have vehicle-

specific characteristics such as mobility, wireless,

hetero-data, and battery characteristics5). To cover

these characteristics, a mobility services framework6)

and vehicular cloud computing7) has been proposed.

However, these approaches are not able to create

service ecosystem which are supported by developer

communities and keep generating new services.

From the perspective of cloud service ecosystem, cloud

native approach8) is getting supported by innovative

service providers and developer communities. Cloud-

native is a software design, development and operation

approach that takes advantage of the cloud to develop

services. Containers, service meshes, micro-services,

immutable infrastructure, and declarative APIs

exemplify this approach. These techniques enable

loosely coupled systems that are resilient, manageable,

and observable. Combined with robust automation,

they allow developers to make high-impact changes

frequently and predictably with minimal toil.

Current commercial cloud systems offer service

mesh concepts, see e.g.16)17) offer service mesh for

cloud but not for edge components. For a survey,

we refer to14), which also introduces the idea of edge

support for service mesh but does not offer any

specific solution or discussion. For some challenges

regarding service mesh in IoT situations, the problem

of latencies is considered in15). Here, we focus on the

flexible deployment in edge computing as well as the

management and orchestration.

To accelerates mobility service development and

operation, OEM service providers already used

cloud native approach. BMW provides multiple

misaki has two technical features: End-to-End (E2E)

orchestrator and Vehicle service mesh. The E2E

orchestrator decouples from application runtime

and infrastructure so that application developers are

able to allocate the appropriate amount of resources

and location for their product. Once they prepare

their container images, our Kubernetes then deploys

and manages those containers across edge and cloud

according to user configuration and available resources.

A service-mesh, according to the early definition in

[18], is a “dedicated infrastructure layer for handling

service-to-service communication. It’s responsible for

the reliable delivery of requests through the complex

topology of services that comprise a modern, cloud

native application”. A service-mesh takes care of

service discovery, load balancing, error handling as

well as monitoring and management functions. For an

overview of cloud oriented solutions, we refer to [14].

For a vehicle service mesh, we have to consider the

specific challenges of edge computing inside vehicles,

regarding computing and networking resources. This

means in particular the scalability of containers toward

more limited computing platforms (also called vertical

scalability. While there are promising works container

technologies for various kinds of devices, e.g. [19][13],

a main open challenge is the support for application

mesh, e.g. discussed in [14]. Thus, this paper

presents a first approach for combining container-

based approaches with Kubernetes and service mesh

technologies in the vehicle-edge context.

The remainder of this paper is organized as follows.

Section 2 briefly surveys related works. Section 3

explains the approach in detail. Section 4 evaluates

workloads on the edge environment. Section 5

discusses effectiveness of our approach.

Service frameworks that use data and devices as

35 36

DENSO TECHNICAL REVIEW Vol.25 2020

特
　
　
　
集

seamlessly and addresses network concerns. Service

developers are then able to focus on their business

values/logic implementation. Thus, improving

developer’s productivity.

Fig. 4 illustrates Vehicle service mesh functionalities.

We chose Envoy proxy, the most widely adapted

software for service mesh proxies. We implement

custom-made control plane and network functions

(e.g. data queue, network connection selector, data

compression and more).

As computing resources of vehicle edge are limited,

workload footprints are an important factor. To

compare workloads, we set up four type of edge

container orchestrator: Kubernetes, k3s12), Balena IoT13)

and misaki. Kubernetes is a full set of Kubernetes

and it contains entire master node and worker node

functions. k3s is a light weight Kubernetes. Balena

IoT is an edge IoT solution and support container

deployment. Its functions are similar to AWS IoT and

Azure IoT but Balena IoT footprint is smaller than

them. For the edge environment, we prepare ‘Intel

Core-i5 6500TE 2.3GHz, 8GB RAM computer’ and

five sensor data processing containers.

Fig. 5 shows time series data of each orchestrator’s

CPU usage. k3s is higher than Kubernetes, Balena IoT

is lower than them and misaki shows minimum CPU

usage. As misaki off loads master node and related

functions to cloud, we expects total misaki workload is

almost same as Kubernetes.

To launch and accelerate mobility service, developer’s

productivity is key factor. Existing mobility service

frameworks requires to get use to their environment

and it reduces productivity. Service developers

are already fond of using cloud native approach

and possess technical assets. To maximize their

productivity, misaki provides the following features;

● �Utilizing skillsets and reusing software development

assets, such as CI/CD pipeline, install package

template (like helm chart), test environment, sidecar

containers, monitoring environment and reusing

policy.

● �Seamless edge/cloud integration: Developers is able

to deploy their containers to vehicle/network edge.

According to the workload or low battery issues in

vehicle, containers can be migrated to the cloud.

● �Software-defined networking (SDN): Each mobility

service have different processing priorities, so

we provides programmable network layer based

on service mesh. Developer is able to allocate

appropriate network connection like LTE/Wi-Fi

Fig. 4　Vehicle Service Mesh Architecture

4. Evaluation

Fig. 5　CPU Workloads on Core-i5 6500TE 2.3GHz

5. Discussion

This architecture gives positive impacts to developer

efficiency: Service developers can easily create their

application on the cloud, test it on the cloud and

deploy their application to the edge. There are no

special technology for edge application development

with E2E Orchestrator. All of the concepts and

technologies are widely known in service developers:

Container and Kubernetes are de facto of in modern

software development. Fig. 3 shows GUI console of

E2E Orchestrator. Service developer is able to register

their container applications in Helm chart format and

deploy containers to edge and cloud.

3.2.2 Vehicle Service Mesh
Vehicle service mesh decouples vehicle’s network

concerns from applications and connects the service

components. In service mesh11), data plane proxies

(“sidecars”) run alongside of containers and they

handle cloud network connection to other service

components. The service mesh with the use of these

proxies takes care of timeouts, retries, traffic volume

controls, service discoveries, load balancing and more.

However, vehicle edges have additional network

concerns like no network connection occasionally,

heterogeneous connection (4G, 3G, Wi-Fi, DSRC,

LPWA) and traffic priorities. To address these

concerns, we developed Vehicle service mesh as an

enhancement of service mesh. As Vehicle service

mesh interconnects vehicle/network edge and cloud

3.2.1 E2E Orchestrator
The E2E orchestrator decouples application runtime

and infrastructure so that the service developers can

choose the most suitable technology stack for their

product. Once they prepare their container images,

our Kubernetes then deploys and manages those

containers on both edge and cloud according to

user’s configuration and available resources. This is

particularly important if the services need API access

or data sources from the vehicle or from the cloud.

The platform can orchestrate the access to these via

a service mesh. However, it remains to the developer

to find a suitable placement of service components

based on service needs, service context, and capacity of

computing resources.

E2E Orches t r a to r ma in ly cons i s t s o f th ree

components (Fig. 2): Kubernetes as edge and cloud

container orchestrator, digital twin for edge and cloud

configuration management, Helm chart repository for

container package management and Vehicle service

mesh controller for seamless communications between

services. We first decompose Kubernetes functions

into edge kubectl and the other functionalities

and only the edge kubectl is allocated to vehicle/

network edge to minimize workload footprints.

Fig. 2　 E2E Orchestrator Architecture

Fig. 3　E2E Orchestrator Console

37 38

DENSO TECHNICAL REVIEW Vol.25 2020

特
　
　
　
集

小 泉 清 一
こいずみ せいいち

情報通信事業部　クラウドサービス開発部
車載エッジコンピュータ，コネクティッド基
盤技術の開発に従事

A m a n G u p t a
アマン グプタ

情報通信事業部 クラウドサービス開発部
Edge computing and cloud oftware
engineer

著者

Yo n g J u n K a i
ヨン ジュンカイ

情報通信事業部　クラウドサービス開発部
Edge computing and cloud software
engineer

and insert network functions (e.g. IDS/IPS, FW,

encryption, queue)

To evaluate productivity improvement, we will have

user trials of mobility service development.

In this paper, we proposed a mobility edge/cloud

service framework called ‘misaki’, which integrates

vehicle edge, network edge and cloud seamlessly. It

also deploys and operate mobility service modules on

this heterogeneous environment. Service developers

can develop their applications on cloud, test it on

virtual vehicle environment and deploy it anywhere.

Also there is no need to consider differences of

environment.

Toward the realization of the misaki framework,

fur ther s tudies need to be conducted on an

implementation study on distributed data layer and

consideration on security.

References
1)　CNCF Cloud Native Landscape, https://landscape.cncf.io/
2)　�IEEE P2413 “Standard for an Architectural Framework

for the Internet of Thing”, https://standards.ieee.org/
standard/2413-2019.html

3)　�ITU-T Y.2060 “Overview of the Internet of things”, 2012,
https://www.itu.int/rec/T-REC-Y.2060-201206-I

4)　�A. Al-Fuqaha, “Internet of Things: A Survey on Enabling
Technologies , Protocols , and Appl icat ions” , IEEE
Communications Surveys & Tutorials, Volume: 17, Issue: 4

5)　�N.Lu, et. al., “Connected Vehicles: Solutions and Challenges”,
IEEE Internet of Things Journal, Volume: 1 , Issue: 4 , 2014

6)　�M. Whaiduzzaman, et. al., “A survey on vehicular cloud
computing”, Journal of Network and Computer Applications,
2014

7)　�W. He, et. al., “Developing vehicular data cloud services
in the IoT environment”, IEEE Transactions on Industrial
Informatics, Volume10, Issue2, 2014

8)　�“CNCF Cloud Native Definition v1.0”, https://github.com/
cncf/toc/blob/master/DEFINITION.md

9)　�BMW “Cloud Native@BMW Group, Technology for the
agile transition”, RedHat Summit 2017

10)　�Ford Motor Company, “Ford Motor Company’s Cloud Native
Reference Application”, SpringOne Platform 2017

11)　�W. Li, Y. Lemieux, et. al., “Service Mesh: Challenges, State of
the Art, and Future Research Opportunities,” IEEE SOSE,
2019.

12)　�k3s: light weight kubernetes, https://github.com/rancher/k3s
13)　Balena IoT, https://www.balena.io/
14)　�Li, Wubin, et al. “Service mesh: Challenges, state of the art,

and future research opportunities.” 2019 IEEE International
Conference on Service-Oriented System Engineering (SOSE).
IEEE, 2019.

15)　�X. He and F. Deng, “Research on Architecture of Internet
of Things Platform Based on Service Mesh,” 2020 12th
International Conference on Measuring Technology and
Mechatronics Automation (ICMTMA), Phuket, Thailand,
2020, pp. 755-759,

16)　�AWS App Mesh, https://aws.amazon.com/de/app-mesh/
17)　�Google Cloud, Traffic Director, https://cloud.google.com/

traffic-director/docs/traffic-director-concepts
18)　�https://buoyant.io/2017/04/25/whats-a-service-mesh-and-

why-do-i-need-one/
19)　�S. Liu and Y. Zu, “Design and Research of Edge Layer Service

Platform Based on Flexible Service Architecture,” 2019 IEEE
10th International Conference on Software Engineering and
Service Science (ICSESS), Beijing, China, 2019, pp. 555-560,
doi: 10.1109/ICSESS47205.2019.9040827.

6. Conclusion

