Multi-Task Curriculum Learning
Based on Gradient Similarity *

Hiroaki IGARASHI
Rei KAWAKAMI
lkuro SATO

Kenichi YONEJI
Teppei SUZUKI

Kohta ISHIKAWA
Shingo YASHIMA

Intensive studies on multi-task learning (MTL) with deep neural networks have shown cases where both
test error and computational cost can be reduced compared to single-task learning. However, several
studies have argued that a naive implementation of MTL often degrades test performance due to gradient
conflict, in which task-wise gradients have a negative inner product. These studies also invented ways to
modify the gradients and eliminate the conflict. One concern about these methods is that the obtained
solution is no longer optimal for the original objective due to the modification. In this paper, we propose
a multi-task curriculum learning based on gradient similarity (MCLGS) to mitigate the negative impact of
gradient conflicts while retaining the original objective toward the end of the training. We adopt a simple
curriculum strategy that gives more weight to mini-batches exhibiting fewer gradient conflicts in the early
stage of training. We experimentally confirmed that MCLGS outperforms existing MTL methods, such as
MGDA, PCGrad, GradDrop, and CAGrad, on BDD100OK and NYUv2 datasets.

Key words :
Machine Learning, Deep Neural Networks, Multi-task Learning

1 Introduction of the network between multiple tasks, is a possible

solution to simplify the system and reduce the

Robotics applications, such as autonomous driving complexity.

(AD) and advanced driver-assistance systems (ADAS), In MTL, if the magnitude of task-wise gradients
require multiple perceptional tasks [5, 7, 28], for is unbalanced during training, the trained model
example, object detection and semantic segmentation. could be biased toward specific tasks. Therefore,
If these tasks are implemented as separate models, the several methods for balancing loss function have been
system will be complex and can involve redundant proposed [3, 12]. However, if only the balancing loss
computations between each model. Multi-task function is applied, each task may have adverse effects
learning (MTL) [6, 26, 30], which shares a portion on the other in MTL. One possible cause of this is

* Proceedings of the British Machine Vision Conference (BMVC), 2022.

: (.)
Update 8
l'l'asklha-:kwai l u

¥ Taskl output

Taskl output

(a) An overview of MCLGS

DENSO TECHNICAL REVIEW Vol.28 2023

Enry

Lndas

Training i I =
iy Morrmal ATl -
[Treat tham sgually)

(b} Weighting gradient in MCLGS

Fig.1 (a) An overview of MCLGS; 4; and 4; denote the j-th and j-th task-wise gradients on a shared network among
tasks (shown as pink blocks). In MCLGS, a pair of task-wise gradients (¢, ;) are weighted by the weight w/;
(shown in purple) and used to update the model parameters 6. (b) The design of the weight w';,. This depends
on the amount of gradient conflict measured by the cosine similarity between task-wise gradients and the
training step t. It is designed such that the weight becomes higher than 1 to encourage training if the cosine
similarity is high; otherwise, it will be lower than 1 to suppress training in the early stage of training (top
in (b)). As learning progresses, w';, will not depend on cosine similarity and will always be around 1, which is
consistent with the naive MTL update rule (bottom in (b))

gradient conflict, in which the inner product between
the gradients of tasks is negative. In this case, since
the parameter updates of each task are oriented in
different directions, conflicting gradients sometimes
lead to insufficient solution for each task.

Several studies [4, 16, 21, 29] have tackled this
problem. For example, PCGrad [29] manipulated
gradients such that the conflicting components were
removed, and only the orthogonal components of
each gradient were extracted and used for the update.
Although such methods can remove gradient conflicts,
a converged solution is no longer optimal for the
original objective due to gradient manipulation.
Specifically, if the conflicting components of gradients
have a large difference in magnitude, then these
components contain significant information. However,
conventional methods simply discard this information
by removing these components.

In this paper, we propose a multi-task curriculum
learning based on gradient similarity (MCLGS), which
mitigates the negative impact of gradient conflicts
between tasks. MCLGS introduces a curriculum
learning strategy [2] that removes hard samples in
the early stage of training in multi-task learning. In

single-task learning (STL), the difficulty of samples are

generally determined by how hard input is to classify.
For MTL, we redefine the difficulty by amount of
gradient conflicts. Thus, in MCLGS, samples which
generates gradient conflicts, are considered as hard to
train in multi-task learning, and are downweighted in
the early stage of training. However, these samples are
gradually included as training progresses. Specifically,
to validate our idea, we present a simple and somewhat
heuristic function that determines the weights for
each gradient given the gradient similarity and the
training step. As shown in Fig. 1, the function is
designed such that the conflicting (aligned) gradients
are downweighted (more weighted) in the early stages,
and any type of gradients is treated equally at later
stages; that is, the weights for each gradient approach
a fixed value. By applying these strategies, MCLGS
mitigates the negative impact of gradient conflicts
without gradient manipulation, and the update rule
of MCLGS is consistent with that of naive MTL at
the end. Thus, MCLGS retains the original objective
toward the end of the training and helps to converge
on a better solution than conventional methods. We
confirmed experimentally that MCLGS outperforms
existing MTL methods, such as MGDA [21], PCGrad
[29], GradDrop [4], and CAGrad [16], on NYUv2

[22] and BDD100K datasets [28]. Although existing
methods do not improve the performance from the
baseline on the BDD100K dataset, MCLGS performs

even better than the baseline.

2 Related Work

As categorized in [26], existing approaches in
MTL belong to either architectural methods or
optimization strategy methods. An example of
architectural methods is a self-attention mechanism
adopted to obtain better features shared among tasks
[17]. In MTL, a backbone, which works as a feature
extractot, is generally shared among multiple tasks as
shown in Fig. 1 (a). However in [8, 18, 19], task-
wise backbones were implemented individually and
connected via connection layers for sharing features.
For a head, such as the classifier or regressor, a
cascaded structure was proposed to share features of
the early stages [27, 31]. These methods manually
introduced new connections between task-specific
networks. To automatically find such connections
during training, neural architecture search has also
been utilized [10, 23]. Since MCLGS does not depend
on a specific architecture, it can be combined with
these methods.

In contrast, several approaches focus on the
optimization strategy of MTL. For example, a
loss balancing scheme was proposed based on
homoscedastic uncertainty [12] or the norm of the
gradient [3]. Similar to MCLGS, some studies [9,
15, 20] introduced a learning strategy inspired by the
curriculum [2] that orders training data from easy ones
to hard ones. For example, [9] and [15] prioritized
tasks during training depending on the difficulty of
the task. [20] divided tasks into strongly and weakly
correlated groups, and applied transfer learning from
the former to the latter. Since these methods are not

motivated by the reduction of the gradient conflict,

MCLGS can also be combined with them.

Several gradient manipulation methods [4, 16, 21,
29] have been proposed to remove gradient conflicts.
For example, PCGrad [29] removed the conflicting
gradient components of two tasks by simply selecting
one task and subtracting the conflicting component
for the other task. This was repeated for random
combinations of the tasks. Only the orthogonal
component for the other task is used for the parameter
update. CAGrad [16] modified gradients to be a
Pareto-optimal point around the original objective.
However, if we manipulate the gradients, the retained
solution may no longer be optimal since the objective
function will be deviated from the original one.
Meanwhile, MCLGS retains the original objective
toward the end of the training and helps to converge

on a better solution than these methods.

Algorithm 1 MCLGS"s Update Rule

Require: Model parameter 8, # of current iining step
I fori=0,.. ,(N=1)do
L T "F.ﬁ, a L6, 8,)
3 g Valil0.8)
4 end for
S fori=0,...,(N=2)do
6 for j=(i+1),....IN=1)do
T: whie Flgi g
& end for
o end for _
10: return update AG = -;;—q'—lz:' Py E':' _;I. P wilei+eg)

3 Method

MTL aims to train a partially shared network to
minimize the objectives of all tasks simultaneously.
Considering that we have N tasks, then the loss

function for MTL is given as follows:
£(0.6,....0v-1)=Y Li(6.6), (1)

where L(é,@i) denotes the loss function of the i-th
task, and @ and 6, represent the shared parameters and
specific parameter of the i-th task, respectively (i.e.,
the so-called head, such as the classifier and regressor).
Hence, 0:=(6 6,,...,0,.,) refers to all parameters in
the network. Here, g, :=V, L, (6,0, denotes a batch
gradient of the i-th task, and # is the learning rate.
Thus, the update rule in MTL is as follows:
| Nl

9'=E—'T_.\—.EEHE.'- ()
MCLGS focuses on §;:=Vy L, (6,0,), which is a
batch gradient of the shared parameter 0. While
conventional methods [16, 21, 29] removed gradient
conflicts by manipulating the gradients, MCLGS
introduces a curriculum learning strategy based
on directional similarity into multi-task learning.
Curriculum learning [2] is a training paradigm that
orders training data from easy to hard, like a human
learning strategy. By introducing this strategy, the
learner can update parameters toward better local
minima in the early stages and can reach a better
solution.
To introduce this strategy in an MTL setting, MCLGS
considers samples that produce more gradient
conflicts as harder samples. In addition, we ignore
these hard samples in the early stages of training
by downweighting their gradients. In MCLGS, the
curriculum is controlled by the weighting function f,

and the batch gradient is weighted by w',;, which is an

ij>

DENSO TECHNICAL REVIEW Vol.28 2023

output of the weighting function f. An entire process
of MCLGS’s update rule is represented in Algorithm
1. First, task-wise gradients of shared parameters are
extracted. Second, a relative weight among tasks is
calculated by the weighting function f based on the
number of gradient conflicts between the i-th and
j-th tasks and the training step t. More details of the
weighting function f will be described later. We define

the relative weight w',; as follows:

"'J:._r = f &, Ej.t). (3)

Here, note that a curriculum is defined by fbased
on not only gradients but also the training step 2
Specifically, fis designed such that the output increases
according to the similarity in the beginning part of
training. In the later training stages, the output will
be independent of the similarity (i.e., the output
approaches a fixed value). Finally, the batch gradient is
weighted by w',;, and the parameter 6 is updated. The
update rule of MCLGS is given as follows:

N=2 N=I

' 1 y .
] :H—”mz E llf_}-'{l{'r"'_l;llll. (4)

i=0 j=i+1

3.1 Weighting Function f

As formulated in [11], curriculum learning comprises
scoring and pacing functions. The scoring function
defines how hard the fed sample is, while the pacing
function denotes how many hard samples are accepted
in the current training step. These two functions also
need to be introduced in the weighting function f.
Additionally, following the definition of curriculum
learning, the weighting function f'should be defined as
a monotonically increasing function. In this paper, we

use the following function for the weighting function:

f(#i.2.0) = tanh(s (8. 2;) p(r))+ 1, 5)

where s denotes the scoring function, and p represents

the pacing function. Moreover, similar to [24], we use

a cosine similarity given in the following equation as

the scoring function:

Th (6)

The pacing function p is designed to approach 0
according to the increasing t. For example, it could be

a linear decay, which is given as follows:

plt) = max (ag —1Aa.0). ?)

Conversely, it could be an exponential decay, given as

follows:
plr) = aory. (8)

An example of the weighting function f'is shown in
Fig. 2. The angle of fwill be smoother according
to the increasing ¢, and finally, it will converge at 0,
which signifies a fixed weight (W';; = 1). Additionally,
a, and Aa for the linear decay and r,’ for the
exponential decay are hyperparameters, and should
be tuned to the target model architecture or the
target dataset appropriately. These hyperparameters
could be one of the limitations of MCLGS, but it is
a common problem in many MTL methods [3, 4,
16]. Regarding how to select the hyperparameters, we
will experimentally show the parametric sensitivity
studies in Section 4.2.1. Additionally, since this paper
focuses on introducing curriculum learning based on
gradient similarity in MTL, we selected the simple and
somewhat heuristic weighting function f. Thus, the f
in this paper might not be best solution and finding

better f might be future work.

o0 — —

0 o8 =] i
1.7 20 epaah| Al J
—— 25 epocht=G9 |
L3049 ___ 37 spochi{t=934 f .
3 wpschit=1 195 { - I
L35 | o
f —
5 rLoo e -
£ [
oS e
oS0 |
028 J
A
o

o0 =
430 ~01% -010 -005 000 005 oMW Gas o
i simiarity

Fig.2 An example of weighting function f on the
BDD100OK dataset. The angle of f will be
smoother according to the increasing t, and
finally, it will converge at O, signifying a fixed
weight (w'; = 1). Note that linear decay (Eq. ?7)
is used for the pacing function, where a, = 40,
and Aa =3e-4

4 Evaluation

We evaluated MCLGS in a common MTL setting and
the AD/ADAS MTL setting. For the common MTL
setting, we chose the NYUv2 [22] dataset, which
consists of three computer vision tasks: semantic
segmentation, depth estimation, and surface normal
prediction. For the AD/ADAS setting, we selected
the BDD100K [28] dataset, which contains two
computer vision tasks: object detection and semantic

segmentation.

4.1 Setup

4.1.1 The NYUv2 Dataset

We followed the evaluation setup in [16]. The single-
task learning (STL) baseline model is SegNet [1], as
described in [16], and the MTL baseline model is
SegNet with MTAN [17]. Conventional methods
and MCLGS are applied to the MTL baseline model.
For the conventional methods, we evaluated MGDA
[21], PCGrad [29], GradDrop [4], and CAGrad
[16]. Additionally, the combination of MCLGS and
CAGrad shows the compatibility of MCLGS. For
the training setup, we apply the SGD optimizer with
a learning rate of 0.007, a momentum of 0.9 and a

weight decay of 0.0001 because the adaptive learning

rate on the Adam optimizer could be incompatible
with MCLGS. The results with the Adam optimizer,
which is used in the evaluation setup [16], is reported
in the supplementary material. Since MGDA [21]
and CAGrad [16] changed the balance between task
objectives, we applied uncertainty weigh loss [12]
for loss balancing on all methods to achieve a fair
comparison. We trained the model three times using
each different random seed and calculated the average
accuracy. Similar to [16], we also used the average
per-task performance drop Am. While Am is directly
calculated for all metrics in [16], we first calculated
the average per-metric performance drop in task i.
Thus, Am;= %(—1)li’j(Mm,,._j—Mb,,.‘j)/Mb’,.,j, where m and
b represent the target method and the STL baseline,
respectively; K denotes the number of metrics on task
i; and [; = 1 if a higher value satisfies a criterion M,
for the metric j of task i better; otherwise, [, = 0. We
calculated the average of m; for all the tasks to get Am.
We used the STL baseline with the Adam optimizer as

a baseline for Am calculation.

4.1.2 The BDD10OK Dataset

For the STL baseline model, we used FCOS-RT [25]
for object detection. For semantic segmentation, we
combined ResNet50, the feature pyramid network
(FPN) used in FCOSRT [25], and a segmentation
head in [13]. For the MTL models, we applied an
FCOS head and a segmentation head in [13] to
ResNet50 and an FPN used in FCOS-RT [25], which
were shared among tasks. For the loss function, we
followed [25] for object detection and used the cross
entropy and dice loss weighted by 0.5 for semantic
segmentation.

Although the BDD100K dataset comprises two tasks,
each dataset is separated, and labels are not annotated
on the same image (this setting is more closer to the
actual operation than the common MTL setting).

Therefore, if each sample could have a ground truth

DENSO TECHNICAL REVIEW Vol.28 2023

of only one task, then the loss function for the other
sample would be missing. A missing loss function
of the task means that the learner studies each task
alternatively, which may cause catastrophic forgetting
[14] during training. To avoid this, we pre-trained
STL models for each task and utilized their outpus
to train MTL model as pseudo labels for each one.
Moreover, we always fed the ground truths and pseudo
labels to the MTL setting. Therefore, the loss function
of this setting is formulated as follows:

Lt =W L'.I"“'.ll'ﬂlr'_u'.'.l’-l{'.l ™ Wy “'.-.J—_-_e:.ﬁ T

W pseudoWad L pseudo.od + W psendoWssL pseudo 55, ©)
where gt and pseudo represent the ground truth
and the pseudo labels, respectively, and od and ss
denote object detection and semantic segmentation,
respectively. Additionally, w denotes the weights of
loss functions for each label and task type. Here, we
searched these weights without any MTL methods
and used wy, = 0.8, Wy, = 0.2, w,; = 1.7 and w, =
0.3. Note that L;,,; and Ly, could be missing, but
Lyseudood A0d Lygeuq00a always exist. To generate the
pseudo label, we used thresholds for the teacher model
output. The threshold is 0.3 for object detection, 0.2
for non-maximum suppression, and 0.8 for semantic
segmentation.

Further details of the setup are as follows. We used the
SGD optimizer with 0.9 momentum, 0.0001 weight
decay, and we enabled Nestrov. The batch size was
16, and the total epoch was 30. We used a multi-step
learning rate schedule with 0.1 times learning decay
at the 16-th, 22-th, 28-th epoch. The initial learning
rate was 0.01, and we used the learning rate warmup
with a 500 step. We reduced the gradient norm below
10. For the evaluation metrics, we used COCO
mAP@0.5:0.95 for object detection and mloU for
semantic segmentation. Similar to NYUv2, we trained
the model three times with each different random

seed and calculated the average accuracy. We applied

MCLGS and conventional methods, such as MGDA
[21], PCGrad [29], GradDrop [4], and CAGrad [16].

4.2 Results
4.2.1 Parametric Sensitivity Study
As mentioned in Section 3.1, the hyperparameters
of the pacing function is one of the limitations in
MCLGS. These hyperparameters could have a large
impact regarding the performance. Thus, first, we
performed a parametric sensitivity study for the pacing
function. In this paper, we used linear decay (Eq. 7)
for the pacing function. Therefore, the pacing function
comprises two hyperparameters: a, and Aa. Since
Aa should be correlated with a,, we introduced the
following definition of Aa:
ap

Aa = P (10)
where t,,, represents the total training steps, and r,
denotes the decreasing ratio, which is a hyperparameter
in this definition. For example, r, = 1 means that when
the training is finished, the curriculum also converges
at the fixed weight. Similarly, r, = 1/2 means that the

curriculum converges in the middle of training.

Table1 A parametric sensitivity study of the pacing
function p for Am% (lower is better) on the
NYUv2 dataset. The performance is more
sensitive regarding r, than a,. Note that the
format of table values is (mean * stderr)

Ty
2 /2
0 - 00500+ 1,03 -
20| 004 =031 -L51 067 -1.45 %061
40| 075£059 212+048 -1.03£018
80 | -1LI8 046 -1.33 031 -0.78 £ 089

Table 1 and Table 2 show the sensitivity study
results regarding a, and r, on the NYUv2 and
BDD100K datasets, respectively. In both cases, the
performance is more sensitive regarding r, than a,.
To maximize performance, a, and 4a should be
appropriate values. However, most cases with the
curriculum outperform cases without the curriculum,
shown as a, = 0, r, = 1. Additionally, a, and r, should
have larger values than those of the NYUv2 dataset,

meaning that the pacing function should be slow.

Table 2 A parametric sensitivity study of the pacing function p for Am% (lower is better) on the BDD100OK dataset.
The performance is more sensitive regarding r, than a,. NaN represents the diverged cases due to the large
weight of the curriculum. Note that the format of table values is (mean * stderr)

4 3

Fy
2 1 1/2

0 . R
40 | 3884026 -394+0.12
=i 3062020 379 L£0.35
“Wo20] 376036 2393024
160 | -3.80 £0.20 -4.00+0.23
200 | -3.88 £+£0.22 NaN

. 32720107 -

3794028 391 +£027 3364027
AR+ 036 37620008 358 £0.21
403 £027 383030 338019
378019 402020 3722021

NaN ST8 2009 -3.43 £ 0008

DENSO TECHNICAL REVIEW Vol.28 2023

Table 3 Multi-task learning resuluts of the NYUv2 dataset: MCLGS with uncertainty weigh loss [12] outperforms
all the other methods. MCLGS with CAGrad improves the performance even better. For the loss weighting
scheme, “equal” represents no loss balancing and “uncert” denotes the uncertainty weigh loss [12]. #P
denotes the relative model size compared to the vanilla SegNet. The best average result for each method
is marked in bold. The best average result among all multi-task methods is annotated with boxes

Segmentation Depth

o N F
Surface Normal Ame)

&P Method Weighting Accuracy | Ermoe]
mlioll Pix Acc AbsEmr RelEmr Mean Median 1125 215 o

Angle Dastance Within (mean + sderm)

k] 511 Haseline

MAY 655 05TEE 023 Dall 044 MM M6 664

L7 MTL Baseline equal 4088 &6l 0549 02290 27.83 2RI} 2363 4893 6LIS 1.29 & 0.60
(MTAN 17D} uncerl,. 3895 6476 DRI} OZIRE IAFF ILGT IR LI &R0 D50 LD}

177 MGDAari) ol

2052 5306 OG63S 02532 2600 2045 JEO7T 558 6606 14.69 £ 017
uncerl, M4l LS 05012 0236 2551 [19.95] [2xse][ss

7o) [6k06] 0.71 & 084
4]

LTT PCGrad [29]

cqual 40.0F o024 05558 02073 0 IR0 TR0 390
uncerl. 3905 6510 [0EMG6| (02163 | 2636 2135 DAIE ELEI sATH -1.40 + .56

L] 1.24 £ 0oh

7T GradDeop 4] e 3008 6487 05307

egueal 4056 &603 03538 0L225] a2 JREF JA26 ARTD 6199 1.47 & 006
0220 a4l 25D e RL4r 654 ALKD + 042

1.77 CAGrad [16]

equal 3939 6327 WESTE O2ITD XARE 06l 2769 34 6698 =121 & 82
uncerl. 3751 6405 05722 0233 2593 T OIMTT A0 6699 DR £ 028

L.77T MCLGS {ours)

equal 4098 664N O5T29 02338 2051 2196 1896 4944 6163 198 & 043
uncerl. 4020 6563 DA 02174 2603 2LID MA6RE ERDD 66 -LI2+ 4R

.77

CAGrad + cqual |41.57 | |e647| 05513 02230 [2580) 2022 226 5506 6173
" MOLGS (ours) uncerl, 3972 6565 OETD 02222 2551 LIS IR4T S5Ad GT.R2

337 £ 072

Table 4 Multi-task learning results of the BDD100K dataset: MCLGS outperforms all the other methods. Following
the evaluation format of [16], #P denotes the relative model size compared to the STL baseline. The best
average result among all multi-task methods is marked in bold

Qb
#P Method

55

mAP@E .50:95 1
(mean =£ stderr)

mlol! Amtio]

(mean = stderr)

(mean =£ stderr)

STL baseline

25,37 +7.31e-4

49.66 £ 1.53¢-3

MTL baseline

26,16 = |.45¢-4

5143 £4.53-4

333007

]

5 MGDA [21] 15.33 £ 6.24e-4
5 PCGrad [29] 26.14 = 1.56¢-4
5 GradDrop [4] 26,00 = 4.78e-5
5 CAGrad | 16] 25.37 £ 5.64e-5
5 MCLGS (ours) 2631 = 1.99e-4

46.61 + 1.37e-3 2285+ 040
51.37 = 3.16e-4 -3.25+£0.23
51.42 £ 5.66e-4 -3.20 4+ 0.2]
50.70 £ 7.30e-4 -1.05 £0.23
51.82 = 8.13¢4 403027

4.2.2 Main Results

We present the results of the NYUv2 dataset in
Table 3. MCLGS achieves the smallest average per-
task performance drop Am of -2.12%. If just focusing
on single-task performance, PCGrad and MGDA [21]
are the best for depth estimation and surface normal
prediction, respectively. However, these methods cannot
improve the performance of the other tasks well. This
could be because they change the objectives by gradient
manipulation and their retained solution is biased
toward specific tasks. In contrast, MCLGS is consistent
with the original objectives and achieves the better
performance of all tasks. Furthermore, the uncertainty

weigh loss [12] is suitable with MCLGS and improves

the performance compared to equal weighting.
Additionally, MCLGS with CAGrad improves the
performance even better. We set a, and Aa to 60 and
5e-4, respectively, based on the parametric sensitivity
study. Moreover, as shown in Table 1 and Table 3,
MCLGS with several hyperparameter settings achieves
the better average per-task performance Am than
existing methods.

We present the results of the BDD100K dataset in
Table 4. MCLGS achieves the best accuracy in both
object detection and semantic segmentation even
including standard errors. Meanwhile, the accuracy
of the conventional methods is below the naive MTL

setting. This might be because of pseudo labels, which

are less accurate than ground truth labels. Hence,
gradients of pseudo labels could conflict with those of
ground truth labels. Here, conventional methods, such
as PCGrad, remove the gradient conflicts whether the
gradient comes from the ground truth or pseudo label.
Thus, conventional methods may update parameters
in the wrong direction. Meanwhile, since MCLGS
just downweights a pair of conflicted gradients, it
may clean up samples that contain inaccurate labels
in this setting. We set a, and Aa to 120 and 4.3e-4,
respectively, based on the parametric sensitivity study.
Moreover, as shown in Table 2 and Table 4,
MCLGS with all hyperparameter settings achieves the
better average per-task performance Am than existing

methods.

5 Conclusion

In this paper, we proposed MCLGS, which mitigates
the negative impact of gradient conflicts between tasks.
MCLGS introduces a curriculum learning strategy [2]
that utilizes only easy samples in the early stages of
training in multi-task learning. Conventional methods
do not update parameters in the corresponding
direction for the original objective because they
manipulate gradients to remove the conflicts.
Meanwhile, MCLGS just downweights samples
that generate gradient conflicts in the early stage of
training, and any type of gradient is treated equally at
later stages, which is consistent with the naive MTL
update rule. Therefore, MCLGS retains the original
objective toward the end of the training and helps
to converge at a better solution than conventional
methods. As a result, we confirmed experimentally
that MCLGS is superior to the conventional methods
and compatible with them, and it can reduce the
average per-task performance drop Am on the NYUv2
[22] and BDD100K datasets [28].

References

(1]

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.
Segnet: A deep convolutional encoder-decoder architecture for
image segmentation. J/EEE transactions on pattern analysis and
machine intelligence, 39(12):2481-2495, 2017.
Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and
Jason Weston. Curriculum learning. In Proceedings of the 26th
annual international conference on machine learning, pages
41-48, 20009.
Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew
Rabinovich. Gradnorm: Gradient normalization for adaptive
loss balancing in deep multitask networks. In International
Conference on Machine Learning, pages 794-803. PMLR,
2018.
Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong,
Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov.
Just pick a sign: Optimizing deep multitask models with
gradient sign dropout. Advances in Neural Information
Processing Systems, 33: 2039-2050, 2020.
Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 3213-3223, 2016.
Michael Crawshaw. Multi-task learning with deep neural
networks: A survey. arXiv preprint arXiv:2009.09796, 2020.
Di Feng, Christian Haase-Schiitz, Lars Rosenbaum, Heinz
Hertlein, Claudius Glaeser, Fabian Timm, Werner Wiesbeck,
and Klaus Dietmayer. Deep multi-modal object detection and
semantic segmentation for autonomous driving: Datasets,
methods, and challenges. JEEE Transactions on Intelligent
Transportation Systems, 22(3):1341-1360, 2020.
Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L
Yuille. Nddr-cnn: Layerwise feature fusing in multi-task
cnns by neural discriminative dimensionality reduction. In
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3205—-3214, 2019.
Michelle Guo, Albert Haque, De-An Huang, Serena Yeung,
and Li Fei-Fei. Dynamic task prioritization for multitask
learning. In Proceedings of the European conference on computer
vision (ECCV), pages 270-287, 2018.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht.

Learning to branch for multi-task learning. In International

Conference on Machine Learning, pages 3854—3863. PMLR,

2020.

Guy Hacohen and Daphna Weinshall. On the power

of curriculum learning in training deep networks. In

International Conference on Machine Learning, pages 2535—

2544. PMLR, 2019.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task

learning using uncertainty to weigh losses for scene geometry

(18]

(20]

and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482-7491,
2018.

Alexander Kirillov, Kaiming He, Ross Girshick, and Piotr
Dolldr. A unified architecture for instance and semantic
segmentation. http://presentations. cocodataset.org/
COCO17-Stuff-FAIR.pdf, 2017.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,
John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521—
3526, 2017.

Changsheng Li, Junchi Yan, Fan Wei, Weishan Dong,
Qingshan Liu, and Hongyuan Zha. Self-paced multi-
task learning. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang
Liu. Conflict-averse gradient descent for multi-task learning.
Advances in Neural Information Processing Systems, 34, 2021.
Shikun Liu, Edward Johns, and Andrew] Davison. End-
to-end multi-task learning with attention. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1871-1880, 2019.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and
Martial Hebert. Cross-stitch networks for multi-task
learning. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3994—4003, 2016.
Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and
Anders Sogaard. Latent multi-task architecture learning. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 4822—4829, 2019.

Nikolaos Sarafianos, Theodore Giannakopoulos,
Christophoros Nikou, and Ioannis A Kakadiaris. Curriculum
learning for multi-task classification of visual attributes. In
Proceedings of the IEEE International Conference on Computer
Vision Workshaps, pages 2608-2615, 2017.

Ozan Sener and Vladlen Koltun. Multi-task learning as
multi-objective optimization. Advances in neural information
processing systems, 31, 2018.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European conference on computer vision, pages
746-760. Springer, 2012.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate
Saenko. Adashare: Learning what to share for efficient deep
multi-task learning. Advances in Neural Information Processing
Systems, 33:8728-8740, 2020.

Mihai Suteu and Yike Guo. Regularizing deep multi-
task networks using orthogonal gradients. arXiv preprint
arXiv:1912.06844, 2019.

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:

DENSO TECHNICAL REVIEW Vol.28 2023

A simple and strong anchorfree object detector. JEEE
Transactions on Pattern Analysis and Machine Intelligence,
2020.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van
Gansbeke, Marc Proesmans, Dengxin Dai, and Luc Van
Gool. Multi-task learning for dense prediction tasks: A
survey. [EEE transactions on pattern analysis and machine
intelligence, 2021.

Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe.
Pad-net: Multi-tasks guided prediction-and-distillation
network for simultaneous depth estimation and scene
parsing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 675—684, 2018.

Fisher Yu, Haofeng Chen, Xin Wang, Wengi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Darrell.
Bdd100k: A diverse driving dataset for heterogencous
multitask learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 2636—2645,
2020.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelskea Finn. Gradient surgery for
multi-task learning. Advances in Neural Information Processing
Systems, 33:5824-5836, 2020.

Yu Zhang and Qiang Yang. A survey on multi-task learning.
[EEE Transactions on Knowledge and Data Engineering, 2021.

Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, Nicu
Sebe, and Jian Yang. Patternaffinitive propagation across
depth, surface normal and semantic segmentation. In
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4106—4115, 2019.

Supplementary Materials

A Additional Experimental Results

In the main paper, we reported the experimental
results of the NYUv2 dataset [6], where the optimizer
is changed from Adam to SGD, because the adaptive
learning rate in the Adam optimizer is not suitable
with MCLGS. However, this change in the evaluation
setup [3] could be unfair for the other existing
methods. Thus, we also evaluated each method with
the Adam optimizer following the setting in [3].

Additionally, Am is recalculated using the result of the

methods, while that of MCLGS using the SGD
optimizer is -3.71% which is better than PCGrad and
GradDrop. Additionally, since the adaptive learning
rate of Adam is incompatible with MCLGS, MCLGS
is more compatible with SGD than Adam.

Additionally, we found that MGDA with uncertainty
weigh loss performs effectively. While MGDA with
equal weighting is biased against surface normal
prediction, the uncertainty weigh loss improves
the performance of semantic segmentation and
depth estimation. This may be because MGDA
breaks the balance of loss functions to maintain the

Paretooptimal, while uncertainty weigh loss restores

B Visualization Results of the
Cosine Similarity and Weight

To confirm that the weight w';; is generated depending
on the cosine similarity, we visualized the cosine
similarity and the weight generated by MCLGS in
Fig. 1 and Fig. 2. As designed, w',; fluctuates a lot
depending on the cosine similarity but converges
around 1.0 as learning progresses because MCLGS
includes samples generating gradient conflicts at the
end of the training. Additionally, we observed that the
cosine similarity also tends to converge to 0, which

means that the direction of task-wise gradients is

DENSO TECHNICAL REVIEW Vol.28 2023

L'h.-

fi
l.]lﬁ‘-’[j h_! 1 I||'|1

STL baseline with the Adam optimizer. the balance. This is reasonable because CAGrad, which orthogonal.
We present the full results on the NYUv2 dataset in introduces a balance constraint of loss function into o son_ e o
Table 1. The Am of MCLGS with CAGrad using MGDA, also performs well.
SGD reaches -5.01% and outperforms all the other
(b) wy
Fig.2 Visualization results of cosine similarity and
yaihoak w',; with increasing training step t of the
Table1 Multi-task learning resuluts of the NYUv2 dataset: MCLGS with CAGrad outperforms all the other 'f""lf‘ i BDD100K dataset. The weight is generated
methods. MCLGS without CAGrad is better than PCGrad and GradDrop. For the loss weighting scheme, | depending on the cosine similarity. Raw values
“equal” represents no loss balancing, and “uncert” denotes the uncertainty weigh loss [2]. #P denotes the are plotted as points while lines represent the
relative model size compared to the vanilla SegNet. The best average result for each method is marked in exponential mean average (EMA) of each value
bold. The best average result among all multi-task methods is annotated with boxes SReranciva

(a) Cosine similarity

oM K pu Auface Ponnal Ao As shown in Fig. 1, the cosine similarity between
L4 Metbod Optim. Werghting Accuracy Error] Angle Dustance] Within 1™ T tmean & siderr)
mioll Pix Acc AbsEmr RelEr Mean Median 1125 235 10 wn 4 . . .
e M- U8 64 008 0NN H% DI Wi T4 68 - semantic segmentation and surface normal estimation
o SGD - XY 64EE LETHE 02N 2612 2044 IROM 5456 6684 -1.72 £ 1.21 -
P L K. 5 (3 T e e VR I e R T W K ~+ L" is higher than that at the beginning of the NYUv2
177 ML Bascline Adamt - cen. 351 6435 05351 02215 2651 2169 2556 5212 AS20 131 053 ol | '\ 1. { '-’l"- f oy ')
TUMTANHD oy cqul 0S8 6614 05489 02290 2783 2323 2363 4893 6215 0422077 . % ,:_"_ dataset. This means that the gradient of depth
uncen. 3895 6476 05423 02ISE 2655 JL6T 2860 5212 6520 20K+ 099 [||II v, Mt i
Ada OW1 30T 6056 0616 02419 |3_*ﬁ_‘r 15.88] [3069][S10][7006] 252 = 0.9 estimation highlights a different direction from that of
177 MGDA 5] umcert. W25 ES17 DSeH 0227 403 164 W34 00 E9H -LSE4 LI6 .
S Mk cqual 2052 $316 06638 02537 2600 2045 280 5438 6696 1303 LI3 : . .
SOD e BiSt 0913 0k 3681 100¢ 2880 570 806 0961040 the others. One possible reason could be that semantic
p— T Lo 55 3% 3174 3 .
Adgm SHEIWOTOEIST - DIMI 02D 42 S segmentation and surface normal prediction are prone
197 BCCd [7 uncent. 3803 6448 0B3RR 02M3 2608 2097 2691 3356 ehdl 2355097 g P p
. irud 7] gpp faml T3 OGR4 05558 02275 2070 2307 2370 4925 6240 047085 . .)))
MUY uncen. 305 6510 05366 02163 2636 2135 3638 SLEI 6570 295+ 064 = to using object boundary information, while depth
Adam T ST OESHE OIS 024D IS8 2RED 08 4175 olad e (52 g
177 GeadDrop 1] unceni, 3837 6456 0SM8 02270 2637 2157 2562 S236 6853 148045 estimation is not. Furthermore, the model might be
sGp Sl 4056 6613 0SSIE 02251 2790 2335 2326 4BT0 6199 023114 -
: 3, 27 0537 ol 2642 2L52 E142 65 23 50 e
upcen, WIR 6L I 204l 2152 2644 5242 654 14 (b) wiy; trained to take this information initially.
adam €Ol W6 GENT [0SNS] 02IS5 1509 2078 2094 5402 6105 453063
LT7 CAGrd 3] T umeen. 3031 6543 030 02283 2EET 2071 2700 5422 £TM0 3224100
S cqual 3939 6527 05578 02270 25885 2061 2769 5434 6698 285+ 1.33) e S .
SOD ncen. 351 6405 05722 023390 2593 IS 2077 5440 6699 0904 102 Fig.1 Visualization results of cosine similarity and w,
Adam Ul 3189 6379 03646 02288 2797 2368 1274 4806 6146 24T = 102 with increasing training step t of the NYUv2
177 MCLGS fours) umcert. 3728 6352 0% 0273 26 H 21,30 2653 5233 hﬁ.h—! AL TH == (34 dataset. The Weight is generated depending
sop cawl M98 6643 05720 02356 2751 2206 2396 4044 6265 019 £083 th . imilarity. S tation. depth
UYL upcen. 4020 6563 0529 02174 2603 2LI1 2668 SR 6626 -ATIE0T6 on the cosine similarity. ~egmentation, depth,

and normal represent semantic segmentation,
depth estimation, and surface normal
prediction, respectively. Raw values are plotted
as points, while lines represent the exponential
mean average (EMA) of each value

CAGrad y cqual 352 6494 (5436 |0.215)] 2624 2056 2580 5237 6559 247+ |48
d)
"‘ AGIM mcen, 325 6471 OS3d 02198 2580 2093 2690 S165 6G66 200064

1T MCLGS .
fiuars) sop ol (4187 05513 02230 2880 2022 2826 5516 6173 i.gl:::,:;
g 33

uncert. MATY 6563 070 02222 2551 NS BRJ4T BAA3 eT.ED

(a) Successful example

(¢
{jz-p e s

(b) Failed example

Fig. 3 Examples that PCGrad [?] works well and
not. (a) Projected average gradient § is still
similar to the original average gradient
g', while gradient conflict is removed. (b)
Projected gradient § is far from the original
average gradient §' even though gradient
conflict is removed. In this case, the conflicted
component of the task gradient g; is dominant
on the average gradient because the norm of
g; is much larger than that of g, However, this
component is eliminated by PCGrad

C The Problem of Gradient
Manipulation

In the main paper, we described that gradient
manipulation leads to non-optimal solution for the
original objectives. In this section, we will give the
details of gradient manipulation and the case updating
parameters into non-optimal direction.

For example, PCGrad [7] manipulated gradients such
that the conflicting components were removed, and
only the orthogonal components of each gradient
were extracted and used for the update. Gradient
manipulation of PCGrad is formulated as follows:

Ri-Bj .)
—gn
&1 M

Si=8i—

where g; and g denote batch gradients of the i-th and

j-th task, respectively. Note that Eq. 1 represents the

manipulation for g;, but PCGrad also applied this
manipulation for g; as well. Fig. 3 shows examples of
gradient projection by PCGrad. As shown in Fig. 3
(@), if the magnitude of task-wise gradients is similar,
the projected average gradient § is also similar to the
original average gradient §'. Therefore, the retained
solution is around the original objectives in this case.
However, as shown in Fig. 3 (b), if the magnitude
of task-wise gradient is much different, the retained
solution is far from the original objectives. In this case,
although conflicted component of §; is dominant
on the average gradient §, PCGrad eliminated this

component to remove gradient conflict.

References
[11 Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong,

Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov.
Just pick a sign: Optimizing deep multitask models with
gradient sign dropout. Advances in Neural Information
Processing Systems, 33: 2039-2050, 2020.

[2] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geometry
and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482-7491,
2018.

[3] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang
Liu. Conflict-averse gradient descent for multi-task learning.
Advances in Neural Information Processing Systems, 34, 2021.

[4] Shikun Liu, Edward Johns, and Andrew] Davison. End-to-
end multi-task learning with attention. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pages 1871-1880, 2019.

[5] Ozan Sener and Vladlen Koltun. Multi-task learning as
multi-objective optimization. Advances in neural information
processing systems, 31, 2018.

[6] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European conference on computer vision, pages
746-760. Springer, 2012.

[7]1 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for
multi-task learning. Advances in Neural Information Processing

Systems, 33:5824-5836, 2020.

=8

AtE E8

WHsL UBHE

Al TR
EGRHROWRRARC S

alll EX

wiLhb 257
FIV—TATFA—FRI N
WRFE, ESNEOMEMFECKES

$BA TF

ITIE ToHRL
TI=TATA—ZRIN) FE (T2
IvEa—49ET 3y, BRFBICET DM
RIS

£ %

TES W<3BS
FIN=TAT4—FRSN) EL (B)
Wi EEEDHFRMAFEICREE

DENSO TECHNICAL REVIEW Vol.28 2023

LA

KT f#—

LR FAVs

Al FFEE
B HBEEDBRRRMARICEE

Nk #m
hbhE hn

RRIFEARFTIZRY AT LAGIEHRAER
® Bt (BREID)
drvEa—4vETay, ERLEDHREIC
e

NI &&

»LE LAZ
TOV=TATA—ZRIN) HREHE
IIWN—T

ETIVERE - BEEAOBERFITEERCIEE

