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Intensive studies on multi-task learning (MTL) with deep neural networks have shown cases where both
test error and computational cost can be reduced compared to single-task learning. However, several
studies have argued that a naive implementation of MTL often degrades test performance due to gradient
conflict, in which task-wise gradients have a negative inner product. These studies also invented ways to
modify the gradients and eliminate the conflict. One concern about these methods is that the obtained
solution is no longer optimal for the original objective due to the modification. In this paper, we propose
a multi-task curriculum learning based on gradient similarity (MCLGS) to mitigate the negative impact of
gradient conflicts while retaining the original objective toward the end of the training. We adopt a simple
curriculum strategy that gives more weight to mini-batches exhibiting fewer gradient conflicts in the early
stage of training. We experimentally confirmed that MCLGS outperforms existing MTL methods, such as
MGDA, PCGrad, GradDrop, and CAGrad, on BDD100OK and NYUv2 datasets.
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1 Introduction of the network between multiple tasks, is a possible

solution to simplify the system and reduce the

Robotics applications, such as autonomous driving complexity.

(AD) and advanced driver-assistance systems (ADAS), In MTL, if the magnitude of task-wise gradients
require multiple perceptional tasks [5, 7, 28], for is unbalanced during training, the trained model
example, object detection and semantic segmentation. could be biased toward specific tasks. Therefore,
If these tasks are implemented as separate models, the several methods for balancing loss function have been
system will be complex and can involve redundant proposed [3, 12]. However, if only the balancing loss
computations between each model. Multi-task function is applied, each task may have adverse effects
learning (MTL) [6, 26, 30], which shares a portion on the other in MTL. One possible cause of this is
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Fig.1 (a) An overview of MCLGS; 4; and 4; denote the j-th and j-th task-wise gradients on a shared network among
tasks (shown as pink blocks). In MCLGS, a pair of task-wise gradients (¢, ;) are weighted by the weight w/;
(shown in purple) and used to update the model parameters 6. (b) The design of the weight w';,. This depends
on the amount of gradient conflict measured by the cosine similarity between task-wise gradients and the
training step t. It is designed such that the weight becomes higher than 1 to encourage training if the cosine
similarity is high; otherwise, it will be lower than 1 to suppress training in the early stage of training (top
in (b)). As learning progresses, w';, will not depend on cosine similarity and will always be around 1, which is
consistent with the naive MTL update rule (bottom in (b))

gradient conflict, in which the inner product between
the gradients of tasks is negative. In this case, since
the parameter updates of each task are oriented in
different directions, conflicting gradients sometimes
lead to insufficient solution for each task.

Several studies [4, 16, 21, 29] have tackled this
problem. For example, PCGrad [29] manipulated
gradients such that the conflicting components were
removed, and only the orthogonal components of
each gradient were extracted and used for the update.
Although such methods can remove gradient conflicts,
a converged solution is no longer optimal for the
original objective due to gradient manipulation.
Specifically, if the conflicting components of gradients
have a large difference in magnitude, then these
components contain significant information. However,
conventional methods simply discard this information
by removing these components.

In this paper, we propose a multi-task curriculum
learning based on gradient similarity (MCLGS), which
mitigates the negative impact of gradient conflicts
between tasks. MCLGS introduces a curriculum
learning strategy [2] that removes hard samples in
the early stage of training in multi-task learning. In

single-task learning (STL), the difficulty of samples are

generally determined by how hard input is to classify.
For MTL, we redefine the difficulty by amount of
gradient conflicts. Thus, in MCLGS, samples which
generates gradient conflicts, are considered as hard to
train in multi-task learning, and are downweighted in
the early stage of training. However, these samples are
gradually included as training progresses. Specifically,
to validate our idea, we present a simple and somewhat
heuristic function that determines the weights for
each gradient given the gradient similarity and the
training step. As shown in Fig. 1, the function is
designed such that the conflicting (aligned) gradients
are downweighted (more weighted) in the early stages,
and any type of gradients is treated equally at later
stages; that is, the weights for each gradient approach
a fixed value. By applying these strategies, MCLGS
mitigates the negative impact of gradient conflicts
without gradient manipulation, and the update rule
of MCLGS is consistent with that of naive MTL at
the end. Thus, MCLGS retains the original objective
toward the end of the training and helps to converge
on a better solution than conventional methods. We
confirmed experimentally that MCLGS outperforms
existing MTL methods, such as MGDA [21], PCGrad
[29], GradDrop [4], and CAGrad [16], on NYUv2




[22] and BDD100K datasets [28]. Although existing
methods do not improve the performance from the
baseline on the BDD100K dataset, MCLGS performs

even better than the baseline.

2 Related Work

As categorized in [26], existing approaches in
MTL belong to either architectural methods or
optimization strategy methods. An example of
architectural methods is a self-attention mechanism
adopted to obtain better features shared among tasks
[17]. In MTL, a backbone, which works as a feature
extractot, is generally shared among multiple tasks as
shown in Fig. 1 (a). However in [8, 18, 19], task-
wise backbones were implemented individually and
connected via connection layers for sharing features.
For a head, such as the classifier or regressor, a
cascaded structure was proposed to share features of
the early stages [27, 31]. These methods manually
introduced new connections between task-specific
networks. To automatically find such connections
during training, neural architecture search has also
been utilized [10, 23]. Since MCLGS does not depend
on a specific architecture, it can be combined with
these methods.

In contrast, several approaches focus on the
optimization strategy of MTL. For example, a
loss balancing scheme was proposed based on
homoscedastic uncertainty [12] or the norm of the
gradient [3]. Similar to MCLGS, some studies [9,
15, 20] introduced a learning strategy inspired by the
curriculum [2] that orders training data from easy ones
to hard ones. For example, [9] and [15] prioritized
tasks during training depending on the difficulty of
the task. [20] divided tasks into strongly and weakly
correlated groups, and applied transfer learning from
the former to the latter. Since these methods are not

motivated by the reduction of the gradient conflict,

MCLGS can also be combined with them.

Several gradient manipulation methods [4, 16, 21,
29] have been proposed to remove gradient conflicts.
For example, PCGrad [29] removed the conflicting
gradient components of two tasks by simply selecting
one task and subtracting the conflicting component
for the other task. This was repeated for random
combinations of the tasks. Only the orthogonal
component for the other task is used for the parameter
update. CAGrad [16] modified gradients to be a
Pareto-optimal point around the original objective.
However, if we manipulate the gradients, the retained
solution may no longer be optimal since the objective
function will be deviated from the original one.
Meanwhile, MCLGS retains the original objective
toward the end of the training and helps to converge

on a better solution than these methods.

Algorithm 1 MCLGS"s Update Rule

Require: Model parameter 8, # of current iining step
I fori=0,.. ,(N=1)do
L T "F.ﬁ, a L6, 8,)
3 g Valil0.8)
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3 Method

MTL aims to train a partially shared network to
minimize the objectives of all tasks simultaneously.
Considering that we have N tasks, then the loss

function for MTL is given as follows:
£(0.6,....0v-1)=Y Li(6.6), (1)

where L(é,@i) denotes the loss function of the i-th
task, and @ and 6, represent the shared parameters and
specific parameter of the i-th task, respectively (i.e.,
the so-called head, such as the classifier and regressor).
Hence, 0:=(6 6,,...,0,.,) refers to all parameters in
the network. Here, g, :=V, L, (6,0, denotes a batch
gradient of the i-th task, and # is the learning rate.
Thus, the update rule in MTL is as follows:
| Nl

9'=E—'T_.\—.EEHE.'- ()
MCLGS focuses on §;:=Vy L, (6,0,), which is a
batch gradient of the shared parameter 0. While
conventional methods [16, 21, 29] removed gradient
conflicts by manipulating the gradients, MCLGS
introduces a curriculum learning strategy based
on directional similarity into multi-task learning.
Curriculum learning [2] is a training paradigm that
orders training data from easy to hard, like a human
learning strategy. By introducing this strategy, the
learner can update parameters toward better local
minima in the early stages and can reach a better
solution.
To introduce this strategy in an MTL setting, MCLGS
considers samples that produce more gradient
conflicts as harder samples. In addition, we ignore
these hard samples in the early stages of training
by downweighting their gradients. In MCLGS, the
curriculum is controlled by the weighting function f,

and the batch gradient is weighted by w',;, which is an

ij>
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output of the weighting function f. An entire process
of MCLGS’s update rule is represented in Algorithm
1. First, task-wise gradients of shared parameters are
extracted. Second, a relative weight among tasks is
calculated by the weighting function f based on the
number of gradient conflicts between the i-th and
j-th tasks and the training step t. More details of the
weighting function f will be described later. We define

the relative weight w',; as follows:

"'J:._r = f &, Ej.t). (3)

Here, note that a curriculum is defined by fbased
on not only gradients but also the training step 2
Specifically, fis designed such that the output increases
according to the similarity in the beginning part of
training. In the later training stages, the output will
be independent of the similarity (i.e., the output
approaches a fixed value). Finally, the batch gradient is
weighted by w',;, and the parameter 6 is updated. The
update rule of MCLGS is given as follows:

N=2 N=I

' 1 y .
] :H—”mz E llf_}-'{l{'r"'_l;llll. (4)

i=0 j=i+1

3.1 Weighting Function f

As formulated in [11], curriculum learning comprises
scoring and pacing functions. The scoring function
defines how hard the fed sample is, while the pacing
function denotes how many hard samples are accepted
in the current training step. These two functions also
need to be introduced in the weighting function f.
Additionally, following the definition of curriculum
learning, the weighting function f'should be defined as
a monotonically increasing function. In this paper, we

use the following function for the weighting function:

f(#i.2.0) = tanh(s (8. 2;) p(r))+ 1, 5)

where s denotes the scoring function, and p represents

the pacing function. Moreover, similar to [24], we use




a cosine similarity given in the following equation as

the scoring function:

Th (6)

The pacing function p is designed to approach 0
according to the increasing t. For example, it could be

a linear decay, which is given as follows:

plt) = max (ag —1Aa.0). ?)

Conversely, it could be an exponential decay, given as

follows:
plr) = aory. (8)

An example of the weighting function f'is shown in
Fig. 2. The angle of fwill be smoother according
to the increasing ¢, and finally, it will converge at 0,
which signifies a fixed weight (W';; = 1). Additionally,
a, and Aa for the linear decay and r,’ for the
exponential decay are hyperparameters, and should
be tuned to the target model architecture or the
target dataset appropriately. These hyperparameters
could be one of the limitations of MCLGS, but it is
a common problem in many MTL methods [3, 4,
16]. Regarding how to select the hyperparameters, we
will experimentally show the parametric sensitivity
studies in Section 4.2.1. Additionally, since this paper
focuses on introducing curriculum learning based on
gradient similarity in MTL, we selected the simple and
somewhat heuristic weighting function f. Thus, the f
in this paper might not be best solution and finding

better f might be future work.
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Fig.2 An example of weighting function f on the
BDD100OK dataset. The angle of f will be
smoother according to the increasing t, and
finally, it will converge at O, signifying a fixed
weight (w'; = 1). Note that linear decay (Eq. ?7)
is used for the pacing function, where a, = 40,
and Aa =3e-4

4 Evaluation

We evaluated MCLGS in a common MTL setting and
the AD/ADAS MTL setting. For the common MTL
setting, we chose the NYUv2 [22] dataset, which
consists of three computer vision tasks: semantic
segmentation, depth estimation, and surface normal
prediction. For the AD/ADAS setting, we selected
the BDD100K [28] dataset, which contains two
computer vision tasks: object detection and semantic

segmentation.

4.1 Setup

4.1.1 The NYUv2 Dataset

We followed the evaluation setup in [16]. The single-
task learning (STL) baseline model is SegNet [1], as
described in [16], and the MTL baseline model is
SegNet with MTAN [17]. Conventional methods
and MCLGS are applied to the MTL baseline model.
For the conventional methods, we evaluated MGDA
[21], PCGrad [29], GradDrop [4], and CAGrad
[16]. Additionally, the combination of MCLGS and
CAGrad shows the compatibility of MCLGS. For
the training setup, we apply the SGD optimizer with
a learning rate of 0.007, a momentum of 0.9 and a

weight decay of 0.0001 because the adaptive learning

rate on the Adam optimizer could be incompatible
with MCLGS. The results with the Adam optimizer,
which is used in the evaluation setup [16], is reported
in the supplementary material. Since MGDA [21]
and CAGrad [16] changed the balance between task
objectives, we applied uncertainty weigh loss [12]
for loss balancing on all methods to achieve a fair
comparison. We trained the model three times using
each different random seed and calculated the average
accuracy. Similar to [16], we also used the average
per-task performance drop Am. While Am is directly
calculated for all metrics in [16], we first calculated
the average per-metric performance drop in task i.
Thus, Am;= %(—1)li’j(Mm,,._j—Mb,,.‘j)/Mb’,.,j, where m and
b represent the target method and the STL baseline,
respectively; K denotes the number of metrics on task
i; and [; = 1 if a higher value satisfies a criterion M,
for the metric j of task i better; otherwise, [, = 0. We
calculated the average of m; for all the tasks to get Am.
We used the STL baseline with the Adam optimizer as

a baseline for Am calculation.

4.1.2 The BDD10OK Dataset

For the STL baseline model, we used FCOS-RT [25]
for object detection. For semantic segmentation, we
combined ResNet50, the feature pyramid network
(FPN) used in FCOSRT [25], and a segmentation
head in [13]. For the MTL models, we applied an
FCOS head and a segmentation head in [13] to
ResNet50 and an FPN used in FCOS-RT [25], which
were shared among tasks. For the loss function, we
followed [25] for object detection and used the cross
entropy and dice loss weighted by 0.5 for semantic
segmentation.

Although the BDD100K dataset comprises two tasks,
each dataset is separated, and labels are not annotated
on the same image (this setting is more closer to the
actual operation than the common MTL setting).

Therefore, if each sample could have a ground truth
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of only one task, then the loss function for the other
sample would be missing. A missing loss function
of the task means that the learner studies each task
alternatively, which may cause catastrophic forgetting
[14] during training. To avoid this, we pre-trained
STL models for each task and utilized their outpus
to train MTL model as pseudo labels for each one.
Moreover, we always fed the ground truths and pseudo
labels to the MTL setting. Therefore, the loss function
of this setting is formulated as follows:

Lt =W L'.I"“'.ll'ﬂlr'_u'.'.l’-l{'.l ™ Wy “'.-.J—_-_e:.ﬁ T

W pseudoWad L pseudo.od + W psendoWssL pseudo 55, ©)
where gt and pseudo represent the ground truth
and the pseudo labels, respectively, and od and ss
denote object detection and semantic segmentation,
respectively. Additionally, w denotes the weights of
loss functions for each label and task type. Here, we
searched these weights without any MTL methods
and used wy, = 0.8, Wy, = 0.2, w,; = 1.7 and w, =
0.3. Note that L;,,; and Ly, could be missing, but
Lyseudood A0d Lygeuq00a always exist. To generate the
pseudo label, we used thresholds for the teacher model
output. The threshold is 0.3 for object detection, 0.2
for non-maximum suppression, and 0.8 for semantic
segmentation.

Further details of the setup are as follows. We used the
SGD optimizer with 0.9 momentum, 0.0001 weight
decay, and we enabled Nestrov. The batch size was
16, and the total epoch was 30. We used a multi-step
learning rate schedule with 0.1 times learning decay
at the 16-th, 22-th, 28-th epoch. The initial learning
rate was 0.01, and we used the learning rate warmup
with a 500 step. We reduced the gradient norm below
10. For the evaluation metrics, we used COCO
mAP@0.5:0.95 for object detection and mloU for
semantic segmentation. Similar to NYUv2, we trained
the model three times with each different random

seed and calculated the average accuracy. We applied




MCLGS and conventional methods, such as MGDA
[21], PCGrad [29], GradDrop [4], and CAGrad [16].

4.2 Results
4.2.1 Parametric Sensitivity Study
As mentioned in Section 3.1, the hyperparameters
of the pacing function is one of the limitations in
MCLGS. These hyperparameters could have a large
impact regarding the performance. Thus, first, we
performed a parametric sensitivity study for the pacing
function. In this paper, we used linear decay (Eq. 7)
for the pacing function. Therefore, the pacing function
comprises two hyperparameters: a, and Aa. Since
Aa should be correlated with a,, we introduced the
following definition of Aa:
ap

Aa = P (10)
where t,,, represents the total training steps, and r,
denotes the decreasing ratio, which is a hyperparameter
in this definition. For example, r, = 1 means that when
the training is finished, the curriculum also converges
at the fixed weight. Similarly, r, = 1/2 means that the

curriculum converges in the middle of training.

Table1 A parametric sensitivity study of the pacing
function p for Am% (lower is better) on the
NYUv2 dataset. The performance is more
sensitive regarding r, than a,. Note that the
format of table values is (mean * stderr)

Ty
2 /2
0 - 00500+ 1,03 -
20| 004 =031 -L51 067 -1.45 %061
40| 075£059 212+048 -1.03£018
80 | -1LI8 046 -1.33 031 -0.78 £ 089

Table 1 and Table 2 show the sensitivity study
results regarding a, and r, on the NYUv2 and
BDD100K datasets, respectively. In both cases, the
performance is more sensitive regarding r, than a,.
To maximize performance, a, and 4a should be
appropriate values. However, most cases with the
curriculum outperform cases without the curriculum,
shown as a, = 0, r, = 1. Additionally, a, and r, should
have larger values than those of the NYUv2 dataset,

meaning that the pacing function should be slow.

Table 2 A parametric sensitivity study of the pacing function p for Am% (lower is better) on the BDD100OK dataset.
The performance is more sensitive regarding r, than a,. NaN represents the diverged cases due to the large
weight of the curriculum. Note that the format of table values is (mean * stderr)

4 3

Fy
2 1 1/2

0 . R
40 | 3884026 -394+0.12
=i 3062020 379 L£0.35
“Wo20 ] 376036 2393024
160 | -3.80 £0.20  -4.00+0.23
200 | -3.88 £+£0.22 NaN

. 32720107 -

3794028 391 +£027 3364027
AR+ 036 37620008 358 £0.21
403 £027 383030 338019
378019 402020 3722021

NaN ST8 2009 -3.43 £ 0008

DENSO TECHNICAL REVIEW Vol.28 2023

Table 3 Multi-task learning resuluts of the NYUv2 dataset: MCLGS with uncertainty weigh loss [12] outperforms
all the other methods. MCLGS with CAGrad improves the performance even better. For the loss weighting
scheme, “equal” represents no loss balancing and “uncert” denotes the uncertainty weigh loss [12]. #P
denotes the relative model size compared to the vanilla SegNet. The best average result for each method
is marked in bold. The best average result among all multi-task methods is annotated with boxes

Segmentation Depth

o N F
Surface Normal Ame)

&P Method Weighting  Accuracy | Ermoe ]
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Table 4 Multi-task learning results of the BDD100K dataset: MCLGS outperforms all the other methods. Following
the evaluation format of [16], #P denotes the relative model size compared to the STL baseline. The best
average result among all multi-task methods is marked in bold

Qb
#P Method

55

mAP@E .50:95 1
(mean =£ stderr)

mlol! Amtio]

(mean = stderr)

(mean =£ stderr)

STL baseline

25,37 +7.31e-4

49.66 £ 1.53¢-3

MTL baseline

26,16 = |.45¢-4

5143 £4.53-4

333007

]

5 MGDA [21] 15.33 £ 6.24e-4
5 PCGrad [29]  26.14 = 1.56¢-4
5 GradDrop [4] 26,00 = 4.78e-5
5 CAGrad | 16] 25.37 £ 5.64e-5
5 MCLGS (ours) 2631 = 1.99e-4

46.61 + 1.37e-3 2285+ 040
51.37 = 3.16e-4 -3.25+£0.23
51.42 £ 5.66e-4 -3.20 4+ 0.2]
50.70 £ 7.30e-4  -1.05 £0.23
51.82 = 8.13¢4 403027

4.2.2 Main Results

We present the results of the NYUv2 dataset in
Table 3. MCLGS achieves the smallest average per-
task performance drop Am of -2.12%. If just focusing
on single-task performance, PCGrad and MGDA [21]
are the best for depth estimation and surface normal
prediction, respectively. However, these methods cannot
improve the performance of the other tasks well. This
could be because they change the objectives by gradient
manipulation and their retained solution is biased
toward specific tasks. In contrast, MCLGS is consistent
with the original objectives and achieves the better
performance of all tasks. Furthermore, the uncertainty

weigh loss [12] is suitable with MCLGS and improves

the performance compared to equal weighting.
Additionally, MCLGS with CAGrad improves the
performance even better. We set a, and Aa to 60 and
5e-4, respectively, based on the parametric sensitivity
study. Moreover, as shown in Table 1 and Table 3,
MCLGS with several hyperparameter settings achieves
the better average per-task performance Am than
existing methods.

We present the results of the BDD100K dataset in
Table 4. MCLGS achieves the best accuracy in both
object detection and semantic segmentation even
including standard errors. Meanwhile, the accuracy
of the conventional methods is below the naive MTL

setting. This might be because of pseudo labels, which



are less accurate than ground truth labels. Hence,
gradients of pseudo labels could conflict with those of
ground truth labels. Here, conventional methods, such
as PCGrad, remove the gradient conflicts whether the
gradient comes from the ground truth or pseudo label.
Thus, conventional methods may update parameters
in the wrong direction. Meanwhile, since MCLGS
just downweights a pair of conflicted gradients, it
may clean up samples that contain inaccurate labels
in this setting. We set a, and Aa to 120 and 4.3e-4,
respectively, based on the parametric sensitivity study.
Moreover, as shown in Table 2 and Table 4,
MCLGS with all hyperparameter settings achieves the
better average per-task performance Am than existing

methods.

5 Conclusion

In this paper, we proposed MCLGS, which mitigates
the negative impact of gradient conflicts between tasks.
MCLGS introduces a curriculum learning strategy [2]
that utilizes only easy samples in the early stages of
training in multi-task learning. Conventional methods
do not update parameters in the corresponding
direction for the original objective because they
manipulate gradients to remove the conflicts.
Meanwhile, MCLGS just downweights samples
that generate gradient conflicts in the early stage of
training, and any type of gradient is treated equally at
later stages, which is consistent with the naive MTL
update rule. Therefore, MCLGS retains the original
objective toward the end of the training and helps
to converge at a better solution than conventional
methods. As a result, we confirmed experimentally
that MCLGS is superior to the conventional methods
and compatible with them, and it can reduce the
average per-task performance drop Am on the NYUv2
[22] and BDD100K datasets [28].
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Supplementary Materials

A Additional Experimental Results

In the main paper, we reported the experimental
results of the NYUv2 dataset [6], where the optimizer
is changed from Adam to SGD, because the adaptive
learning rate in the Adam optimizer is not suitable
with MCLGS. However, this change in the evaluation
setup [3] could be unfair for the other existing
methods. Thus, we also evaluated each method with
the Adam optimizer following the setting in [3].

Additionally, Am is recalculated using the result of the

methods, while that of MCLGS using the SGD
optimizer is -3.71% which is better than PCGrad and
GradDrop. Additionally, since the adaptive learning
rate of Adam is incompatible with MCLGS, MCLGS
is more compatible with SGD than Adam.

Additionally, we found that MGDA with uncertainty
weigh loss performs effectively. While MGDA with
equal weighting is biased against surface normal
prediction, the uncertainty weigh loss improves
the performance of semantic segmentation and
depth estimation. This may be because MGDA
breaks the balance of loss functions to maintain the

Paretooptimal, while uncertainty weigh loss restores

B Visualization Results of the
Cosine Similarity and Weight

To confirm that the weight w';; is generated depending
on the cosine similarity, we visualized the cosine
similarity and the weight generated by MCLGS in
Fig. 1 and Fig. 2. As designed, w',; fluctuates a lot
depending on the cosine similarity but converges
around 1.0 as learning progresses because MCLGS
includes samples generating gradient conflicts at the
end of the training. Additionally, we observed that the
cosine similarity also tends to converge to 0, which

means that the direction of task-wise gradients is
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(a) Successful example
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(b) Failed example

Fig. 3 Examples that PCGrad [?] works well and
not. (a) Projected average gradient § is still
similar to the original average gradient
g', while gradient conflict is removed. (b)
Projected gradient § is far from the original
average gradient §' even though gradient
conflict is removed. In this case, the conflicted
component of the task gradient g; is dominant
on the average gradient because the norm of
g; is much larger than that of g, However, this
component is eliminated by PCGrad

C The Problem of Gradient
Manipulation

In the main paper, we described that gradient
manipulation leads to non-optimal solution for the
original objectives. In this section, we will give the
details of gradient manipulation and the case updating
parameters into non-optimal direction.

For example, PCGrad [7] manipulated gradients such
that the conflicting components were removed, and
only the orthogonal components of each gradient
were extracted and used for the update. Gradient
manipulation of PCGrad is formulated as follows:

Ri-Bj . )
—gn
&1 M

Si=8i—

where g; and g denote batch gradients of the i-th and

j-th task, respectively. Note that Eq. 1 represents the

manipulation for g;, but PCGrad also applied this
manipulation for g; as well. Fig. 3 shows examples of
gradient projection by PCGrad. As shown in Fig. 3
(@), if the magnitude of task-wise gradients is similar,
the projected average gradient § is also similar to the
original average gradient §'. Therefore, the retained
solution is around the original objectives in this case.
However, as shown in Fig. 3 (b), if the magnitude
of task-wise gradient is much different, the retained
solution is far from the original objectives. In this case,
although conflicted component of §; is dominant
on the average gradient §, PCGrad eliminated this

component to remove gradient conflict.
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