In conventional automobile designs, a radiator and a condenser are typically configured and mounted independently of each other. We have developed a smaller and more powerful cooling module by integrating these two products into one unit. The new cooling module has been designed to share the fin material and to have an insulating slit and other means for effective prevention of heat loss that occurs due to thermal conduction between the radiator and the condenser. In addition, as one of the key techniques for integrating fins, we studied thermal spraying of a brazing filler to the tube material and were able to achieve a practical-level cooling module through use of high-performance fins, and thus contribute largely to the efforts to create a more compact, higher performance cooling module.

Key words: Radiator, Condenser, Cooling module, Thermal spraying, Brazing filler, Tube material
Table 1 Relation between fin material and product’s performance

<table>
<thead>
<tr>
<th></th>
<th>Radiator</th>
<th></th>
<th>Condenser</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fin electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conductivity</td>
<td>type</td>
<td>performance</td>
<td>type</td>
<td>performance</td>
</tr>
<tr>
<td>38% IACS</td>
<td>Clad fin</td>
<td>97%</td>
<td>Clad fin</td>
<td>100%</td>
</tr>
<tr>
<td>50% IACS</td>
<td>Bare fin</td>
<td>100%</td>
<td>Bare fin</td>
<td>103%</td>
</tr>
</tbody>
</table>

- Current material

Fig.2 Properties of Al-Fe-Ni alloy

Fig.3 The structure of cooling module
Table 2 Comparison of thermal spraying process

<table>
<thead>
<tr>
<th>Thermal spraying process</th>
<th>Characteristic of braiding filler metal</th>
<th>Registration of thermal spraying</th>
<th>Equipment cost</th>
<th>Sprayed property</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shape</td>
<td>Chemical composition freedom</td>
<td>Flame temperature (°C)</td>
<td>Grain speed (m/s)</td>
</tr>
<tr>
<td>DJ method High velocity oxygen fuel (Powder)</td>
<td>○ (50%)</td>
<td>× (60%)</td>
<td>2800</td>
<td>960</td>
</tr>
<tr>
<td>Plasma spraying Powder</td>
<td>○ (60%)</td>
<td>×</td>
<td>1600</td>
<td>450</td>
</tr>
<tr>
<td>Electric arc spraying Wire</td>
<td>× (20%)</td>
<td>○</td>
<td>5000</td>
<td>250</td>
</tr>
</tbody>
</table>

Table 3 Operating conditions for DJ method

<table>
<thead>
<tr>
<th>Condition</th>
<th>Oxygen</th>
<th>Propylene</th>
<th>Air</th>
<th>Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (MPa)</td>
<td>1.0 ~ 1.1</td>
<td>0.45 ~ 0.55</td>
<td>0.50 ~ 0.55</td>
<td>1.0 ~ 1.1</td>
</tr>
<tr>
<td>Flow (FMN)</td>
<td>40 ~ 45</td>
<td>42 ~ 46</td>
<td>54 ~ 58</td>
<td>27 ~ 31</td>
</tr>
</tbody>
</table>
Fig. 5 Relation between partial diameter and covering situation

Photo. 2 Surface and cross section situations after spraying
(Particle diameter : 20~70µm)

Fig. 6 Relation between Si content and brazing filler amount for constant fillet length

Fig. 7 Brazing mechanism of Al-Si alloy
Fig. 8 Relation between Si content in filler Al-Si alloy and erosion depth

Fig. 9 Thermal spraying mass production

Photo. 3 Thermal spraying mass production equipment
＜著者＞

杉浦 慎也
（すぎうら しんや）
材料技術部
主に熱交換器用の材料開発に従事

武藤 聡美
（むとう さとみ）
冷却機器技術部
エンジン冷却用熱交換器の開発・設計に従事

山口 浩一
（やまぐち ひろかず）
古河電気工業（株） 小山事業所
研究開発本部 メタル総合研究所
自動車用熱交換器の材料開発に従事

外山 猛敬
（とやま たけとし）
冷暖房開発 3 部
主にエアコン用熱交換器の材料開発に従事

松浦 悟志
（まつうら さとし）
冷暖房開発 3 部
主に空調用熱交換器の開発・設計に従事