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An architecture of neuro-hardware with on-chip learning that when compared to the conventional approach can

be realized on a small-scale digital circuit is proposed. In order to reduce the scale of the circuits, the architecture

employs a new method of computing the membrane potential and the sigmoidal function by encapsulating the

probability properties into a relative delay between two pulses. The back-propagation algorithm is applied to the

network, which is also realized using pulse delay calculation.
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U O INTRODUCTION

The neuro-hardware has significant advantages over
programmed neural network on computer due to its
potential high-speed calculation by parallel processing.
There are two major ways to implement neuro-
hardware into electrical circuit. One is the analog
implementation and the other is the digital
implementation. The digital implementation is easier to
realize and to connect to other circuit or chips.
However, digital neuro-hardware generally requires
larger circuit-scale on silicon than the analog hardware’”
The largeness of digital neuro-hardware results from
interneuron connection and two principal operations in
the neuron, the synaptic multiplication and the
sigmoidal calculation. To solve this problem, a pulsed
neuron model has been proposed’”In this neuron
model, the activity of the neuron is represented by
pulse sequences. This model is much suitable because
a pulse can be specified by 1-bit signal line without
multiple-bit bus line, which means wiring area between
neurons can be dramatically reduced. On the other
hand, the model requires the signal encoding which
appropriately represent the neuron activity.

In this article, we propose a novel relative delay
encoding, and a novel neuron architecture as well, that
focused on small-scale implementation of McCulloch-
Pitts type neuron including sigmoidal-type nonlinear
mapping by encapsulating the probability properties

into relative delay between two pulses. The back-
propagation algorithm is applied to the network, which
is also implemented using pulse multiplication.

U O RELATIVE DELAY CODING OF INPUT
PULSES

The equation of neural calculation we discuss is given
by:
x= ZWI. -a, @
i

y=s(x )
where a; denotes i th input of the neuron, w, the
synaptic weight between g, and the output of previous
neuron. f denotes the nonlinear function such as

sigmoidal function:

1
f(x)= m ®3

In the architecture, both an input value and an output
value are represented by a relative delay between 2
pulses on different signal line A, and T as illustrated in
Fig. 1. On the additional signal line named standard
pulse T, the pulses occur at constant interval:

T={T"T,...} “
A ={A4,47,.} ®

Then, the input value q; is defined by the relative delay
between the corresponding k th pulses:

Kk _ gk (o
a; =T" -4 (k=1.2,..) ©)
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Actually the relative delay af is measured by counting
the number of fast system clock, it is normalized from 0
to 1 corresponding to the neuron activity. For example,
if the pulse 7* and A occur simultaneously, it means that
the input value 0 at time interval k. Similarly, if the pulse
A" occurs just before the next standard pulse 7", it
means 1. In this way, the proposed encoding always has
a set of pulses even if the input has no activity. In the
pulse encoding, it requires minimal wiring area on
silicon because the signal can be represented with 1-bit
line compared to bus interface.

time ——> _ interval k
1 ok k1
Standard pulse 7T T T
T | »
<< -------- -
4 '
Input pulsel 1 NEURON
; ) | | "
« |
1 k-
delay | a,
1
Input pulse2 I A4, I
A )
2T«
1 k
delay a2 a2

Fig. 1 Relative delay encoding

U OO PROBABILISTIC CALCULATION OF
NEURON

There are two key operations to prevent the neural
calculation from realizing into small circuit on silicon.
One is the multiplication of input value with synaptic
weight. Since a parallel multiplier consists of many
adders, it requires large amount of circuit. The other is
the memory for nonlinear mapping of the sum of
weighted inputs. For the digital hardware, counters,
comparators, and random number generators are more
simple and acceptable for implementation. In our
approach, these two operations are calculated
probabilistically which can be realized by these simple
circuits.

3.1 Synaptic multiplication

The principle of synaptic multiplication is similar to
coin-tossing trials. After tossing a fair coin repeatedly
for 100 times, it will result 100x 0.5=50 head-sides. By
extending the principle, repetitive coin-tossing trials
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with head-side probability w/w;, will result af head-sides
on average. From the mathematical point of view, the
following result is obtained.

Theorem 1 Let a synaptic weight w; (0 wif wi, ; wi
be constant) be constant integer through time interval
k, let X be a uniform random variable with density
function U (0, wy). Then, after the repetitive trials of
comparing X with w, for a,times, the expected value of
the number L, in which each trial results XH w;, IS
E (L) =wa/My.

Proof A trial being successful if XH w, is considered
to be a Bernoulli trial of successful rate w;/w;,. Thus,
after repetitive trials for a, times

L~ B(a,,w,[w,,) )

where B means binominal distribution. So, the expected
value E (L) = w;a;/w, , the variance
V(L) = a,w (wy-w,) [ wiy.

Theorem 1 implies that the multiplication result is

O

given probabilistically by the expected value. Since the
inputs coming through a neuron are a set of pulses 7
and Af , the comparing trial starts at the timing of
occurrence T" and ends at Af in proportion to the
relative delay a,. The multiplication completes within
the interval k for each input i. The number of the fast
system clock can measure «; with high accuracy if the
clock frequency is sufficiently fast compared to the
pulse interval k. If w,O 0, the absolute value of w;is
calculated, then the sign of the resulting expected value
is reversed.

Recall that L is random variable, it has some
dispersion. From equation (7), the variance V(L) takes
the maximum value a,,.w,/4 at a,= a,..= 1 and w,= w,, /2.
This worst dispersion spreads to 4.0+ 0.47 with 950
probability at the case aw;=1.0x 4.0 = 4.0 in theory.
However, the experimental dispersion spreads only
within £ 0.03 for realized hardware due to devised
uniform random generator as discussed later.

Finally, the sum x of weighted inputs in equation (1)
is obtained by adding the outputs of all multipliers.

3.2 Nonlinear function
After the multiplication, nonlinear mapping f(x) is
carried out. The probabilistic technique is also applied



to the calculation to eliminate the large mapping
memory.

Let us consider cumulative distribution function F(x)
of normal distribution function g(z) with mean 0 and

varianceo ?:
F) = [ gyt ®)

The shape of F(x) is quite similar to sigmoidal function f
(x) as illustrated in Fig. 2. Furthermore, it is convenient
that it takes F(0) = 0.5, F(«) =1, and F(-«) =0, which is
identical to f(x). In our neuron architecture, the
nonlinear mapping is carried out using F(x). Following
theorem gives us how to calculate the integration in
equation (8).

Sigmoidal function f'(x)

Cumulative distribution F'(x)

1.0

1
SO
0.5

1.0

Fx)= | fydr

0.5

-2 0 2

Integration

1 -(x-4)
\/2—71:0' Exp( 20° )

N(A,0%)=

. 03

— 02 A=0
: 0.1 o=l

2 0 2

S(x) Normal distribution g(f)

Fig. 2 Approximation of sigmoidal function by normal
distribution function

Theorem 2 The cumulative distribution function
F(x) of random variable X[JN (0,07) is equal to the
probability xH 0 for random variable GLJN 0,09).

Proof From the definition of g(z) and line-
symmetricity with ¢+ = 0, the equation (8) can be
transformed to:

o 1 _t2
F(x)= 9 dt
(x) Lma X —)

Replacing the variable r with s =7 - x ,

[
_ j: 3(s)ds ©)

Hence g(s) represents normal distribution with
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expected value x , equation (9) implies that F(x) is equal to
the integration of probability density function N (x,0”) with
xB 0. O

Theorem 2 states that F(x) is obtained just by
checking the sign of the random numbers generated
from normal distribution with expected value x .

Figure 3 illustrates Theorem 2. F(x) corresponds to
the area ratio of hatched area for total area (area size 1).

Normal

distribution g %4

C x>
02 areaof x >0

2 0 2 4 sum X

Cumulative
distribution F'

2 0 X 2 4 sumX

Fig. 3 Principle of the calculation of a sigmoidal
function

With the digital circuit, F(x) is approximately
calculated by the following function F:

. 1 &
F(x,)= ;Zsign(xk) (10)
k=1

where x; (k = 1,...,m) is random number generated from
the normal distribution N (x,0”) , and sign(-) is a sign
function:

1 if(t > 0)

0 if(t<0) (1)

sign(t) = {

In the following, we describe x;, a normal distributed
random number. For example, if x = 0 then 1/5(0)=
(m/2)/m = 1/2 because about half of the normal
distributed random numbers are expected to be
negative. This case corresponds to the hatched area in
Fig. 3 is equal to half of all area.
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3.3 Generating normal distributed random

numbers

As discussed in the previous section, normal
distributed random variable with expected value x is
indispensable in order to calculate the sigmoid-like
nonlinear function. Such random variable can be
generated by adding some uniform distributed random
variables.

Lemmal LetX,,.., X, [J U (-xy, xu) be independent
uniform random variables. Then, the sum S=X, +... +X,
should be approximately normal distribution, that is, S
ON (0, n-x,//3) . Where U means uniform distribution.

Proof Since each X, is uniform distribution, its
expected value is equal to 0 and variance w,/3. From
the Central Limit Theorem? it results SO N (0, n-x,//3) if
n is sufficiently large. O

The Lemma 1 states that S asymptotically be close to
the normal distribution as n increases. The larger n
gives the better approximation to the normal
distribution. However it needs more circuit resources.
In this paper, we set n=4 in view of balance the
approximation accuracy with the circuit scale. A Linear
Feedback Shift Resister (LFSR) with a primitive
polynomial can generate discrete uniform random
number sequence on [-x,-1, x,,]. Then the sum of 4
LFSR becomes as follows:

Theorem 3 The probability distribution of sum S of
4 discrete random variables X, ,..., X, O U (-xy -1, xy)

becomes:
R 1 s+4xy, ( )
BTV p)p(s—i) 12
2 (x) + 1)4 i:—4(Zx“,+l)
where x,, is a positive integer, and
H=min(f+x,, +1,x
p@) ( M ) (13)

—max(? —x,,,—x,, —1)+1

Proof The sum §' of 2 independent random
variables becomes:

§'~ 3 [ falx)

X +x,=5"

(14

where f(-) as well fi(-) is the probability distribution for
the random variable respectively? Recall X, and X, are
independent variables, X, + X, are rewritten using the
equation (14):
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Probability distribution

X, +X,~ Zfl(xl)fz(xz)

X +x,=8"

x=min(x,, +§'+1,X,\1 ) 1

2%(x,, =1’

w=max(S'~xyy,~xy, -1)

=m{min(§'+xM +1,xM)
M

—max(S' - x,,,—x,, —1)+1}

X;+X, can be rewritten similarly. Then let X, +X,, X;+X,
be new random variables, and apply equation (14) again
results equation (12). O

In equation (12), $' has expected value -2, and
variance 4 (x, +3)(x,-1)/3+5 (induction; omit proof).
The distribution is illustrated in Fig.4 with x,, = 127. The
curve has good agreement with the normal distribution
S having same expected value and same variance. The
expected value of § is almost 0 but not 0 strictly;

because of the original uniform distribution is not 0.

=== Experimental result
—&— Cumulative probability of experimental result
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Fig. 4 The normal distribution and an example of
normal random numbers

Finally, the desired distribution G with expected
value x can be obtained by adding S+2 to the sum of
weighted inputs x :

G~ N(x,(x), +3)(x,, —1)/3+5)

=N(x,67) (15)



0 0O HARDWARE CONSTRUCTION

Proposed neuron architecture employs probabilistic
calculation which can be realized by comparators,
random-number generators, and counters unless
parallel multipliers or memory. Figure 5 illustrates the
circuit diagram of a pulse neuron.

NEURON

: Normal !

, random gen. i

' Pulse N(0,07%) i
Al—f—b multiplier i
: wa; ¢ !

| Nonlinear :

: Pulse A;er _x> function _-y» Plllﬁe :

' multiplier transform |1
A—> / |
i Pulse i

H »| multiplier :

Fig. 5 Circuit diagram of the proposed pulse neuron

A neuron is composed of five blocks; Pulse multiplier
block, an Adder block, Nonlinear function block,
Normal distributed random number generation block,
and Normal transform block.

Figure 6 shows more detailed circuit construction of
a neuron. In Fig. 6, relative delay a; is represented by
number of the system clock, synaptic weight is stored
with 8-bit register. Internal signal w;- a;, x;, and q; are
transmitted with 8-bit bus, while A, and Y with 1-bit.

~
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4.1 Synaptic multiplication

The synaptic multiplication explained in Theorem 1
is easy to realize by random number generator, a
comparator for comparing the random number with
synaptic weight w; - a counter for counting the number
of the comparing result.

Uniform random number sequence can be generated
by a LFSR. For example a 7-bit LFSR, which consists of
7 flip-flops, can generate pseudo random number on
[1,127] at the edge of the clock. Then every random
number is compared to wi by the comparator, and the
up-down counter counts up if

LFSR< w, (16)

The number of occurrence of wifj LFSR from T
through Af indicates the resultant multiplication. In the
case of w, 0 0, the absolute value of w, is compared to
the output of LFSR, and the up-down counter counts
down if LFSR EDMJ. A multiplication result, that is the
output of the counter, is fixed at the timing of Af . The
circuit scale is less than 1/10 compared to the parallel
multiplier of same bit width.

We designed the cycle-length of LFSR 127, which is
about half of the maximum delay a,.. =255, so as to
reduce the dispersion. The experimental dispersion is
reduced to 0.25 whereas the theorical variance a,,.w,, /4
=63.75.

4.2 Nonlinear function

In Normal distributed random generator block,
normal distributed random numbers § with expected
value 0 are generated from Theorem 3 § and x , the

E LFSR > E
[ 1rsr g
| g
Pulse multiplier ! LFSR '—b g | Pulse transform
: H .
{[ Lrsr [P ' 5 :
w, b Im01 TS Nonlinear function 1| COWREST :
e . Adder b N [ :
> 5 8 |ine1e1 S|~ 9 D :
sopl ol S LB s | ni
—» a0 | Wil 6 |mtz:o) 1o T P L o >y
-153 L G T L] 5 P —p :
At T X 1 A > | Comp. |
= IS : G &) y 1 H
T " %--» ! [ 1
» L : R,
Ai pnable T I !

Fig. 6
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Detailed circuit diagram of the proposed pulse neuron
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output of the Adder, comes through the Nonlinear
function block. The block is very simple since it
includes only an adder and a counter. The normal
random numbers Gwith expected value x are generated
by adding S with x. The Counter counts up if Ga0 by
checking the MSB, or sign bit of the adder. The output
of the Counter after the pulse A, indicates the neuron
activity y. The calculation of this part is completed
within an interval .

Figure 4 illustrates the occurrence probability of 255
random numbers based on § and its cumulative
frequency as well. Although the dispersion in
occurrence seems to be rather large in contrast to
theoretical § , expected value -2.01 and variance 22017
almost agree with theory.

In this hardware construction, the division in
equation (10) can be omitted because 0H F(x)H 1 in

equation (8) is mapped into the integer 0 ﬁ(x)ﬁ m. CLK

Furthermore, the derivative of the nonlinear function
is obtained by counting up the number of occurrence
x, = 0 since normal distribution N (x,0”) is the derivation
of cumulative distribution F(x), that means it is easy to
calculate Aw; for back-propagation learning without
large derivative memories.

In the Pulse transform block, obtained output y is
transformed into the pulse signal Y.

U O LEARNING

The back-propagation rule is available on learning
synaptic weights. The weight is corrected by:

(s) _ (s),,(s=1)
Awkj =10, Y;

(k=1.,N_,j=1...N_) an
S =P F'(x) (s=1l,..,M)

A =
O-l(j) = Aiw(.wl)g(ﬁl) (s=L...M-1)
. ( yeves
=

7 J

where y,” denotes the output of the neuron in s th layer,
t, denotes training input for k th output neuron for the
output layer,n the learning rate. Equation (17) includes

(s)

derivative F'(y,") , which is generally hard to implement
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into digital circuit. In the architecture, it is clear that the
derivative corresponds to g(-) in (8) because F(-) is
integration of g(-). Then F'(x;”) is rewritten by the
probability of x, (i=1,...,m) to be x, =x;” for the set of
normal distributed random numbers x,,...,x,,. It is

represented by:
1 1
F'(x)=— Z eql(x,x,)
m i

1 (x=x)

eql(xx,) = {O (x#x,) (18)

For instance, if 1 random numbers are equal to x,” then
F'(x.") = 1/m. The circuit for calculating derivative needs
only a comparator and a counter as illustrated in Fig. 7.

Random number N(x,s *) generator

Random number N(0s %) generator

Derivative calculato

(Zero
detector)

4| Comp.
[10:0]

CLK

2
~
=
z
EL
153
]
AN

Fig. 7 Derivative calculator for learning

0 0 CONCLUSION

An architecture of a pulse based neuro-hardware that
can be realized on by far a small-scaled circuit
compared to the conventional hardware has developed.
The hardware has capability of on-chip back-
propagation learning. In order to reduce the scale of the
circuits, the architecture employs a new method of
computing the synaptic multiplication and the sigmoid-
like nonlinear function by encapsulating the probability
properties into relative delay between two pulses.

This research was supported in part by a grand from
Emergent Soft Computer Project held by Nagoya
Industrial Science Research Institute.
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