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特集 An architecture of Small-scaled Neuro-hardware Using
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Learning＊
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An architecture of neuro-hardware with on-chip learning that when compared to the conventional approach can

be realized on a small-scale digital circuit is proposed. In order to reduce the scale of the circuits, the architecture

employs a new method of computing the membrane potential and the sigmoidal function by encapsulating the

probability properties into a relative delay between two pulses. The back-propagation algorithm is applied to the

network, which is also realized using pulse delay calculation.
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１．INTRODUCTION

The neuro-hardware has significant advantages over

programmed neural network on computer due to its

potential high-speed calculation by parallel processing.

There are two major ways to implement neuro-

hardware into electrical circuit. One is the analog

implementation and the other is the digital

implementation. The digital implementation is easier to

realize and to connect to other circuit or chips.

However, digital neuro-hardware generally requires

larger circuit-scale on silicon than the analog hardware.1）

The largeness of digital neuro-hardware results from

interneuron connection and two principal operations in

the neuron, the synaptic multiplication and the

sigmoidal calculation. To solve this problem, a pulsed

neuron model has been proposed.2）In this neuron

model, the activity of the neuron is represented by

pulse sequences. This model is much suitable because

a pulse can be specified by 1-bit signal line without

multiple-bit bus line, which means wiring area between

neurons can be dramatically reduced. On the other

hand, the model requires the signal encoding which

appropriately represent the neuron activity.

In this article, we propose a novel relative delay

encoding, and a novel neuron architecture as well, that

focused on small-scale implementation of McCulloch-

Pitts type neuron including sigmoidal-type nonlinear

mapping by encapsulating the probability properties

into relative delay between two pulses. The back-

propagation algorithm is applied to the network, which

is also implemented using pulse multiplication.

２．RELATIVE DELAY CODING OF INPUT
PULSES 

The equation of neural calculation we discuss is given

by:

....................................................(1)

............................................................(2)

where ai denotes i th input of the neuron, wi the

synaptic weight between ai and the output of previous

neuron. f denotes the nonlinear function such as

sigmoidal function:

........................................(3)

In the architecture, both an input value and an output

value are represented by a relative delay between 2

pulses on different signal line Ai and T as illustrated in

Fig. 1. On the additional signal line named standard

pulse T , the pulses occur at constant interval:

.................................................(4)

.................................................(5)

Then, the input value ai is defined by the relative delay

between the corresponding k th pulses:

...............................(6)

＊ John Wiley & Sons, Inc. の了解を得て，EEJ Vol.139，No.4（2002）より一部加筆して転載
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Actually the relative delay ak

i
is measured by counting

the number of fast system clock, it is normalized from 0

to 1 corresponding to the neuron activity. For example,

if the pulse Tk and Ak

i
occur simultaneously, it means that

the input value 0 at time interval k. Similarly, if the pulse

Ak

i
occurs just before the next standard pulse Tk+1, it

means 1. In this way, the proposed encoding always has

a set of pulses even if the input has no activity. In the

pulse encoding, it requires minimal wiring area on

silicon because the signal can be represented with 1-bit

line compared to bus interface.

３．PROBABILISTIC CALCULATION OF
NEURON 

There are two key operations to prevent the neural

calculation from realizing into small circuit on silicon.

One is the multiplication of input value with synaptic

weight. Since a parallel multiplier consists of many

adders, it requires large amount of circuit. The other is

the memory for nonlinear mapping of the sum of

weighted inputs. For the digital hardware, counters,

comparators, and random number generators are more

simple and acceptable for implementation. In our

approach, these two operations are calculated

probabilistically which can be realized by these simple

circuits.

3.1 Synaptic multiplication

The principle of synaptic multiplication is similar to

coin-tossing trials. After tossing a fair coin repeatedly

for 100 times, it will result 100×0.5=50 head-sides. By

extending the principle, repetitive coin-tossing trials

with head-side probability wi /wM will result ak

i
head-sides

on average. From the mathematical point of view, the

following result is obtained.

Theorem 1 Let a synaptic weight wi (0＜－wi
＜－wM  ; wM

be constant) be constant integer through time interval

k, let X be a uniform random variable with density

function U (0, wM). Then, after the repetitive trials of

comparing X with wi for ai times, the expected value of

the number L, in which each trial results X＜－wi , is 

E (L) = wi ai /wM .

Proof A trial being successful if X＜－wi is considered

to be a Bernoulli trial of successful rate wi /wM . Thus,

after repetitive trials for ai  times

...........................................(7)

where B means binominal distribution. So, the expected

value E (L) = wi ai /wM , the variance 

V (L) = ai wi (wM -wi) / w2
M .                                                    □

Theorem 1 implies that the multiplication result is

given probabilistically by the expected value. Since the

inputs coming through a neuron are a set of pulses Tk

and Ak

i
, the comparing trial starts at the timing of

occurrence Tk and ends at Ak

i
in proportion to the

relative delay ai . The multiplication completes within

the interval k for each input i. The number of the fast

system clock can measure ai with high accuracy if the

clock frequency is sufficiently fast compared to the

pulse interval k. If wi＜0, the absolute value of wi is

calculated, then the sign of the resulting expected value

is reversed.

Recall that L is random variable, it has some

dispersion. From equation (7), the variance V(L) takes

the maximum value amaxwM /4 at ai = amax = 1 and wi = wM  /2.

This worst dispersion spreads to 4.0±0.47 with 95％

probability at the case aiwi = 1.0×4.0 = 4.0 in theory.

However, the experimental dispersion spreads only

within ±0.03 for realized hardware due to devised

uniform random generator as discussed later.

Finally, the sum x of weighted inputs in equation (1)

is obtained by adding the outputs of all multipliers.

3.2 Nonlinear function

After the multiplication, nonlinear mapping f (x) is

carried out. The probabilistic technique is also applied

Fig. 1  Relative delay encoding



to the calculation to eliminate the large mapping

memory.

Let us consider cumulative distribution function F(x)

of normal distribution function g(t) with mean 0 and

varianceσ2 :

............................................(8)

The shape of F(x) is quite similar to sigmoidal function f

(x) as illustrated in Fig. 2. Furthermore, it is convenient

that it takes F(0) = 0.5, F(∞) = 1, and  F(-∞) = 0, which is

identical to f (x). In our neuron architecture, the

nonlinear mapping is carried out using F(x). Following

theorem gives us how to calculate the integration in

equation (8).

Theorem 2 The cumulative distribution function

F(x) of random variable X～N (0,σ2) is equal to the

probability x＞－0 for random variable G～N (0,σ2).

Proof From the definition of g(t) and line-

symmetricity with t = 0, the equation (8) can be

transformed to:

Replacing the variable t with s = t - x ,

.................................(9)

Hence g̃(s) represents normal distribution with

expected value x , equation (9) implies that F(x) is equal to

the integration of probability density function N (x,σ2) with

x＞－0 .                                                                                  □

Theorem 2 states that F(x) is obtained just by

checking the sign of the random numbers generated

from normal distribution with expected value x . 

Figure 3 illustrates Theorem 2. F(x) corresponds to

the area ratio of hatched area for total area (area size 1).

With the digital circuit, F(x) is approximately

calculated by the following function F^ : 

.................................(10)

where xk (k = 1,...,m) is random number generated from

the normal distribution N (x,σ2) , and sign(.) is a sign

function:

.................................(11)

In the following, we describe xk a normal distributed

random number. For example, if x = 0 then F^(0)=

(m/2)/m = 1/2 because about half of the normal

distributed random numbers are expected to be

negative. This case corresponds to the hatched area in

Fig. 3 is equal to half of all area. 
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Fig. 2  Approximation of sigmoidal function by normal

distribution function

Fig. 3  Principle of the calculation of a sigmoidal

function
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3.3 Generating normal distributed random

numbers

As discussed in the previous section, normal

distributed random variable with expected value x is

indispensable in order to calculate the sigmoid-like

nonlinear function. Such random variable can be

generated by adding some uniform distributed random

variables.

Lemma 1 Let X1 ,..., Xn～ U (-xM , xM ) be independent

uniform random variables. Then, the sum S=X1 +...+Xn

should be approximately normal distribution, that is, S

～N (0, n.xM
2/3) . Where Umeans uniform distribution.

Proof Since each Xk is uniform distribution, its

expected value is equal to 0 and variance wM
2/3. From

the Central Limit Theorem,3) it results S～N (0, n.xM
2/3) if

n is sufficiently large.                                                       □

The Lemma 1 states that S asymptotically be close to

the normal distribution as n increases. The larger n

gives the better approximation to the normal

distribution. However it needs more circuit resources.

In this paper, we set n = 4 in view of balance the

approximation accuracy with the circuit scale. A Linear

Feedback Shift Resister (LFSR) with a primitive

polynomial can generate discrete uniform random

number sequence on [-xM -1, xM ]. Then the sum of 4

LFSR becomes as follows:

Theorem 3 The probability distribution of sum  S^ of

4 discrete random variables X1 ,..., X4 ～ U (-xM -1, xM )

becomes:

..............(12)

where xM is a positive integer, and

.............(13)

Proof The sum S^' of 2 independent random

variables becomes:

..................................(14)

where f1(.) as well f2(.) is the probability distribution for

the random variable respectively.4) Recall X1 and X2 are

independent variables, X1 + X2 are rewritten using the

equation (14):

..................................(15)

X3 + X4 can be rewritten similarly. Then let X1 + X2 , X3 + X4

be new random variables, and apply equation (14) again

results equation (12).                                                       □

In equation (12), S^' has expected value -2, and

variance 4 (xM +3)(xM -1) / 3+5 (induction; omit proof).

The distribution is illustrated in Fig.4 with xM = 127. The

curve has good agreement with the normal distribution

S having same expected value and same variance. The

expected value of S^ is almost 0 but not 0 strictly;

because of the original uniform distribution is not 0.

Finally, the desired distribution G^ with expected

value x can be obtained by adding S^ + 2 to the sum of

weighted inputs x :

................................................(15)

Fig. 4  The normal distribution and an example of

normal random numbers



４．HARDWARE CONSTRUCTION

Proposed neuron architecture employs probabilistic

calculation which can be realized by comparators,

random-number generators, and counters unless

parallel multipliers or memory. Figure 5 illustrates the

circuit diagram of a pulse neuron.

A neuron is composed of five blocks; Pulse multiplier

block, an Adder block, Nonlinear function block,

Normal distributed random number generation block,

and Normal transform block.

Figure 6 shows more detailed circuit construction of

a neuron. In Fig. 6, relative delay ai is represented by

number of the system clock, synaptic weight is stored

with 8-bit register. Internal signal wi 
. ai , xj , and aj are

transmitted with 8-bit bus, while Ai and Y with 1-bit.

4.1 Synaptic multiplication

The synaptic multiplication explained in Theorem 1

is easy to realize by random number generator, a

comparator for comparing the random number with

synaptic weight wi
. a counter for counting the number

of the comparing result.

Uniform random number sequence can be generated

by a LFSR. For example a 7-bit LFSR, which consists of

7 flip-flops, can generate pseudo random number on

[1,127] at the edge of the clock. Then every random

number is compared to wi by the comparator, and the

up-down counter counts up if

(16)

The number of occurrence of wi
＞－ LFSR from T

k

through Ak

i
indicates the resultant multiplication. In the

case of wi ＜0, the absolute value of wi is compared to

the output of LFSR, and the up-down counter counts

down if LFSR ＜－｜wi｜. A multiplication result, that is the

output of the counter, is fixed at the timing of Ak

i
. The

circuit scale is less than 1/10 compared to the parallel

multiplier of same bit width.

We designed the cycle-length of LFSR 127, which is

about half of the maximum delay amax = 255, so as to

reduce the dispersion. The experimental dispersion is

reduced to 0.25 whereas the theorical variance amaxwM  / 4

= 63.75.

4.2 Nonlinear function

In Normal distributed random generator block,

normal distributed random numbers S^ with expected

value 0 are generated from Theorem 3 S^ and x , the
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Fig. 5  Circuit diagram of the proposed pulse neuron

Fig. 6  Detailed circuit diagram of the proposed pulse neuron
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output of the Adder, comes through the Nonlinear

function block. The block is very simple since it

includes only an adder and a counter. The normal

random numbers G^ with expected value x are generated

by adding S^ with x. The Counter counts up if G^＞0 by

checking the MSB, or sign bit of the adder. The output

of the Counter after the pulse Ai indicates the neuron

activity y. The calculation of this part is completed

within an interval k. 

Figure 4 illustrates the occurrence probability of 255

random numbers based on S^ and its cumulative

frequency as well. Although the dispersion in

occurrence seems to be rather large in contrast to

theoretical S^ , expected value -2.01 and variance 22017

almost agree with theory.

In this hardware construction, the division in

equation (10) can be omitted because 0＜－F(x)＜－1 in

equation (8) is mapped into the integer  0＜－F^(x)＜－m .

Furthermore, the derivative of the nonlinear function

is obtained by counting up the number of occurrence  

xj
k = 0 since normal distribution N (x,σ2) is the derivation

of cumulative distribution F(x), that means it is easy to

calculate ∆wi for back-propagation learning without

large derivative memories.

In the Pulse transform block, obtained output y is

transformed into the pulse signal Y.

５．LEARNING

The back-propagation rule is available on learning

synaptic weights. The weight is corrected by:

(17)

where yk
(s) denotes the output of the neuron in s th layer,

tk denotes training input for k th output neuron for the

output layer,ηthe learning rate. Equation (17) includes

derivative F'(yk
(s)) , which is generally hard to implement

into digital circuit. In the architecture, it is clear that the

derivative corresponds to g(.) in (8) because F(.) is

integration of g(.). Then F'(xk
(s)) is rewritten by the

probability of xi (i=1,...,m) to be xi =xk
(s) for the set of

normal distributed random numbers x1,...,xm . It is

represented by:

(18)

For instance, if 1 random numbers are equal to xk
(s) then

F'(xk
(s)) = 1/m. The circuit for calculating derivative needs

only a comparator and a counter as illustrated in Fig. 7.

６．CONCLUSION

An architecture of a pulse based neuro-hardware that

can be realized on by far a small-scaled circuit

compared to the conventional hardware has developed.

The hardware has capability of on-chip back-

propagation learning. In order to reduce the scale of the

circuits, the architecture employs a new method of

computing the synaptic multiplication and the sigmoid-

like nonlinear function by encapsulating the probability

properties into relative delay between two pulses. 

This research was supported in part by a grand from

Emergent Soft Computer Project held by Nagoya

Industrial Science Research Institute.

Fig. 7  Derivative calculator for learning



デンソーテクニカルレビュー　Vol.８　No.１　2003

－26－

REFERENCES

1) T. Schoenauer, A. Jahnke, U. Roth, and H. Klar:

Digital Neurohardware: Principles and Perspectives,

Neuronal Networks in Applications-NN’98 (1998),

pp.101-106. 

2) Wolfgang Maass, Christofer M. Bishop: Pulsed

Neural Networks, The MIT Press (1999)

3) K. Ito: Statistical Theory I,II, Iwanami Shoten (1976)

4) K. Kunisawa: Exercise of Probabilistics and Statistics

1, BaiFuKan (1966)

川島　毅

（かわしま　たけし）

基礎研究所

視覚情報処理，創発型ソフトコンピ

ュータの開発に従事

大熊　繁　

（おおくま　しげる）

名古屋大学大学院工学研究科

電子情報学専攻　教授

工学博士

電子情報学に関する教育・研究，主

として，創発型ソフトコンピュータ

の開発，ロボティクス，パワーエレ

クトロニクスの研究に従事

田中　裕章　

（たなか　ひろあき）

基礎研究所

自動車用LSI，IP，ASIC機能回路の

研究開発に従事

石黒　章夫

（いしぐろ　あきお）

名古屋大学大学院工学研究科

計算理工学専攻　助教授

工学博士

創発システム，ロボット工学の研究

に従事

菅原　良一　

（すがわら　りょういち）

基礎研究所

視覚情報処理の研究開発に従事

666666666666666666666666666666666666

＜著　者＞


