特集 ポート噴射インジェクタの噴霧微粒化の開発* **Development of Atomization in Port Injection** 原田明典 沢田行雄 今竹信夫 青木文明 Yukio SAWADA

Akinori HARATA

Nobuo IMATAKE

Fumiaki AOKI

Fuel atomization carried out by the fuel injector is a key factor in reducing the exhaust emissions of internal combustion engines. We have focused on a multiple-hole nozzle as a cost effective atomization method that does not require any auxiliary devices or an external energy source to provide greater atomization.

We have established a definite relationship between fuel flow inside the nozzle hole and fuel atomization. As a result, we have achieved fine atomization by developing a new configuration nozzle hole which produces a liquid film inside the nozzle hole.

Key words : Port injection, Spray, Atomization, Nozzle, Plate, Flow analysis

1.まえがき

本研究の目的は,自動車用ガソリンエンジンに用い られるガソリン吸気管噴射用のインジェクタの噴霧微 粒化を改良することである.

排気規制強化,燃費向上,運転性向上への要求が更 に厳しくなる市場環境の中,始動時の未燃焼HCの低 減,過渡応答性向上への対応のため,燃料噴霧の更な る微粒化改良が望まれている

これまでも様々な微粒化の手法が検討され,実用化 されているが,今回,従来の微粒化手法のなかでも, 低コストで良好な微粒化が得られる多孔ノズル方式²⁾ に着目した, Fig. 1に, 2方向噴射タイプの12孔ノズ ルの構成を示す.12孔タイプは6孔ごとに一つの噴霧 を形成し,ノズルの形状は,上流から下流まで,スト レートな円筒形状となっている.Fig. 2は,多孔ノズ ルプレートにおける微粒化プロセスを図示したもので ある? バルブシートを通過した流れは ,ノズルプ レート上面に衝突することにより , 損(じょう)乱が 誘起される . 擾乱が誘起された流れは, ノズルプレ ート上面に沿って,ノズルへと向い,ノズル直上で等 方的に対向する流れ同士の衝突が起こる . 流れはノ ズル入口端部から剥離すると共に,急激に曲げられ圧 力が一気に解放される . そこで液流はノズル上流で 得たエネルギーにより,自ら分裂する.従って,ノズ ル上流で発生した擾乱エネルギーを有効に使って,燃 料を噴射することが、微粒化にとって重要であると考 えられる.このように従来の研究では,ノズル上流の 流れの影響を明らかにし、ノズル数、配置を最適化す ることで微粒化向上を図ってきたが,単純な円筒形状 のノズルでは微粒化レベルに限界があった。

そこで本研究では,微粒化が向上するノズル内流れ を明らかにし、ノズル形状を改良することで、更なる 高微粒化噴霧を実現するノズルを開発したので、以下 その内容について報告する.

Fig. 1 Nozzle layout and spray photo

*(社)自動車技術会の了解を得て,2002年秋季大会学術講演会前刷集No.77-02,12より転載

2.微粒化開発の着目点

2.1 多孔ノズルの噴霧分裂状態の評価

今回,ノズルから噴射された噴霧と微粒化の関係を 明らかにするために,まず,円筒形状のストレートノ ズルの1孔から噴射される噴霧の分裂状態を評価し た.Fig.3に一つのノズルから噴射される噴霧の分裂 状態を評価する実験装置の概要を示す.12孔の各ノズ ルから噴霧が噴射された状態で一つのノズルに着目 し,その他のノズルからの噴霧の影響を受けることな く分裂状態を観察した.噴霧粒径は,画像処理により 定量化した.

Fig. 4に観察結果及び粒径評価結果を示す.ノズル 直下での噴霧は,液柱状になっている部分が多く存在 し,この液柱部の分裂は下方にいくに従っても荒い粒 子が残った状態であるのに対し,液柱部以外の液膜状 になっている噴霧は,分裂が促進し,微小な粒子とな っていることが観察された.この噴霧を特徴づける液 柱状態と液膜状態自体は直上流であるノズル内の流れ に支配されていると考えられる.そこで,CFD解析を 用いた流れ解析を実施し,ノズル内の流れを明らかに することした.

Fig. 3 Observation test set-up

2.2 ノズル内流れの微粒化への影響

Fig. 5に解析モデルの例を示す.解析には,有限体 積法CFDコードStar-CD(Ver. 3.1A)を用い,高レイ ノルズ数型K-モデルを適用して,非定常解析した. 解析条件は,主としてノズル内の流れ解析をするため (噴孔内は燃料が剥離するため,気体と液体が混在す る流れとなる),燃料と空気の気液2相流解析とした. Fig. 6に解析結果を示す.ノズル入口部では,ほとん どが燃料で満たされているのに対し,ノズル中心部で の流れは,剥離が生じて縮流している様子が分かる. 更にノズル下流部の出口部では,縮流した流れがノズ ル内壁面を伝い液膜状になっている様子が確認でき

Fig. 4 Observation result of break-up spray

た.ここで,ノズル出口部での流れの方向に着目する と,出口部では,垂直な軸線に対し横方向の成分をも った流れが多く存在し,この流れが液膜状の流れを形 成していることが分かった.

そこで,ノズル入口から出口にかけて横流れ成分が どのように変化するかを調べてみた.Fig.7にノズル 入口部,中心部,出口部の流れにおいて,横方向成分 と縦方向成分の比率を評価した結果を示す.この結果 から,ノズル入り口部に対して出口部では横方向成分 の流れが強く発生していることが分かる.

以上の結果より,液柱部に対して分裂が促進した部 分の噴霧は,横方向の成分をもったノズル内壁面の流 れが広げられることにより液膜化した部分であると考 えられる.そこで,これらのデータを元にノズル内の 流れと微粒化の関係を推定してみた.

バルプシートを通過した流れは,ノズルプレート上 面に沿って流れノズルへと向う.流れはノズル入口端 部から剥離すると共に急激に曲げられノズル壁面に押 し付けられる.この時,ノズル内の流れの一部が,下 流にいくに従い横方向成分の強い流れとなり,壁面で 押し広げられ液膜状となる.液柱状で噴射される噴霧 では,液柱部が分裂しにくく噴霧に荒い粒子が残るが, 液膜状となった流れは,燃料の表面積が増え,ノズル 上流で発生した擾乱エネルギーによる分裂が促進され るため,噴霧は均質な微小粒子となり微粒化が向上する.従って,多孔ノズルにおける微粒化向上には,ノ ズル内壁面に沿う横流れを効率的に発生させ,液膜生 成を促進することが重要であると考えられる.

Fig. 5 Analysis model

Fig. 6 Result of flow analysis inside nozzle hole

Fig. 7 Ratio of lateral flow and logitudinal flow

- 3.ノズル形状の改良による微粒化向上検討 -ノズルのテーパ化 -
- 3.1 ノズル形状の改良

この節では,前章で得られた知見をもとにノズル形 状を改良した結果を示す.

ノズルに流入し,急激に曲げられ壁面に押し付けら れた流れを,より効果的に液膜状にするには,下流に いくに従い壁面の面積が徐々に広がっていく形状が有 効であると考えられる.そこで,液膜生成を促進する ノズル形状として,末広がりテーパノズル形状のノズ ル内流れ及び噴霧分裂状態の評価を行った.Fig.8に 従来の円筒ストレートノズルとテーパノズルの形状を 示す.評価条件としては,ノズル角度,ノズル径を同 ーとして,円筒ストレートノズルに対して,テーパ角 度のみを付与したノズル形状とし,ノズル内流れの変 化及びノズル直下での噴霧分裂を評価した.なお,今 回の評価では,ノズル以外(パルブ部分)の形状はす べて同じものを使用し,ノズル上流の条件を同一とし た.

Fig. 8 Taper nozzle

Fig. 9にノズル内流れ解析結果, Fig. 10にノズル直 下での噴霧分裂状態及び噴霧粒径の評価結果を示す. 解析結果より,円筒ストレートノズル内の流れに対し て,テーパノズル内の流れは,ノズル出口部において 狙いどおり横流れ成分の強い流れが発生し,壁面に沿 う流れが液膜状になっていることが確認できた.更に ノズル直下の観察及び粒径評価より,テーパノズルで はノズル直下に液膜状の噴霧が観察され,粒径分布も, 荒い粒子が減少した,より均質な微粒化噴霧となって いることが確認できた.

Fig. 9 Result of flow analysis inside nozzle hole

Fig. 10 Observation result of break-up spray

3.2 テーパ形状の最適化

次に, ノズル内での液膜形成を最適化するためにテ ーパの角度の影響を調査した.Fig. 11にテーパ角度 と噴霧粒径の関係を示す.テーパ角以外のパラメータ はすべて同一として,テーパ角度が噴霧粒径に与える 影響を評価した.また,噴霧粒径は,一つのノズルか ら噴射された50mm下方での噴霧を画像処理により評 価したものとする.テーパ角度が大きくなるに従い噴 粒径は小さくなるが,テーパ角度が大きくなるに従い噴 粒径は小さくなるが,テーパ角度が25°より大きくな ると噴霧粒径の減少はサチュレートしてしまう.これ は,テーパ角度がある値より大きくなると,壁に沿う 横流れが増加しなくなり,液膜の生成が促進されなく なったためと考えられる.以上の結果より,液膜を有 効に発生させるためには,最適テーパ角度が存在する ことが分かった.

Fig. 11 Influence of taper angle on SMD

3.3 開発品の評価結果

テーパ角度を最適化した開発品にて,噴霧性能の評価を実施した.開発品及び従来品の噴霧写真,粒径評価結果をFig. 12に示す.

Fig. 12 Photo of spray and SMD

開発品のノズルプレートのノズル数は12孔とし,ノ ズルの配置及び角度は,噴霧干渉による噴霧粒径の悪 化が生じない設定とした.なお,以後の噴霧粒径評価 は、レーザ回折法により、自動光軸調整機能を有する Malvern社Mastersizer-Sで測定した値とする.

ノズル形状をテーパ化することにより従来品に対し て,SMDが,65µmから50µmに改良された微粒化ノ ズルを開発することができた.また,荒い粒子が減少 することにより噴霧の均一性についても,従来品の噴 霧に対して向上していることが確認できた.

4.テーパノズルインジェクタの微粒化特性

この節では,開発品のノズルプレートにおいて,微 粒化に影響の大きいと考えられる因子について調べた 結果を示す.

4.1 燃料圧力の影響

テーパノズル内で液膜が発生する過程において,流 速は重要な因子の一つと考えられる.また,ノズル上 流の擾乱エネルギーも流速により大きく影響されると 考えられる.そこで,今回ノズル内の流速を変化させ るために,燃料噴射圧力を変化させ,微粒化との関係 を調べた.Fig. 13にテーパノズルを用いた開発品に おいて,燃料噴射圧力と噴霧粒径の関係を示す.燃料 噴射圧力が大きくなるに従い噴霧粒径が小さくなって いることが分かった.これは,噴射圧力が増加するに 伴い、シートを通過する流速及びノズル内の流速が増 加し,擾乱エネルギー及び液膜生成の促進が起こった ためと考えられる.また,この場合,噴射圧力の増加 に伴い噴射流量が増加しているにもかかわらず噴霧粒 径が小さくなっていることを考えると、ノズル径を小 さくし,噴射量一定とすれば,更に微粒化が向上する ことが推定される.

Fig. 13 Influence of injection pressure on SMD

4.2 **雰囲気圧力の影響**

多孔ノズルでは、上流の擾乱エネルギーを利用して いるため、雰囲気圧が微粒化に及ぼす影響は小さいこ とが知られている.そこで、テーパノズルにおいても、 エンジンのアイドリングから全開加速までの吸気管圧 条件を参考として、雰囲気圧0~-65kPaでの噴霧粒 径の変化を調べた.Fig.14にテーパノズルを用いた 開発品と円筒ストレートノズルを用いた従来品におい て、雰囲気圧力と噴霧粒径の関係を示す.この結果よ りテーパノズルの微粒化噴霧は、従来品と同様に雰囲 気圧の影響は小さいことが分かった.

Fig. 14 Influence of ambient pressure on SMD

5.おわりに

- (1)12孔ノズルにおいて、一つのノズルからの噴霧分裂状態を拡大観察することにより、ノズル内の流れが微粒化に影響することが分かった。
- (2) ノズル内流れにおいて,壁面に沿う流れが押し広 げられることにより,液膜状噴霧が生成されること が分かった.
- (3)ノズル下流での液膜の分裂は液柱の分裂に対して, 荒い粒子の頻度が減少し,均質な微小噴霧となるこ とを明らかにした.
- (4) ノズル形状を、従来の円筒ストレート形状に対して、末広がりのテーパ形状とすることにより、液膜 生成が促進し、より微粒化が向上することが分かった。その結果、エンジンにおける未燃焼HC低減により有効となる、SMD50 µ mの均質微粒化噴霧を 開発した。

<参考文献>

- K.Takeda, T.Yaegashi, K.Sekiguchi, K.Saito, N.Imatake
 Mixture Preperation and HC Emissions of a 4-valve Engine with Port Injection during Cold Staring and Warm-up " SAE Paper 950074 (1995)
- 2) Y.Tani, Y.Mori, K.Mochizuki, A.Suzuki
 - " Fuel Atomization of Multiple-hole Nozzle Injection " SAE Paper 1999-01-0564

<著 者>

原田 明典 (はらた あきのり) ガソリン噴射技術部 ガソリンインジェクタ開発に従事

沢田 行雄 (さわだ ゆきお) ガソリン噴射技術部 ガソリンインジェクタ開発に従事

今竹 信夫
(いまたけ のぶお)
(株)日本自動車部品総合研究所 第4研究室
パワートレイン分野の研究に従事

青木 文明
(あおき ふみあき)
(株)日本自動車部品総合研究所
第1研究室
パワートレイン分野の研究に従事