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In this paper, a new architecture for sensor fusion for Advanced Driver Assistant Systems (ADAS) is proposed.

This architecture is based on Bayesian Network and plays the role of platform for integrating various sensors such as

Lidar, Radar and Vision sensors into sensor fusion systems. This architecture has the following 3 major

advantages:

(1) It makes structure and signal flow of the complicated fusion systems easy to understand 

(2) It increases the reusability of the sensor algorithm modules

(3) It achieves easy integration of various sensors with different specifications

These advantages are confirmed by vehicle test.

Key words  : Sensor fusion, Bayesian Network, Advanced Driver Assistant Systems, MMW radar, Vision sensor,

Camera, LIDER

１．INTRODUCTION

Untill now, Advanced Driver Assistant Systems (ADAS)

such as ACC (Adaptive Cruise Control) and FCAAS

(Frontal Collision Avoidance Assistance System) have been

developed. These systems are using frontal monitoring

sensors, such as millimeter wave (MMW) radar, laser radar

(LIDAR) or vision sensor (video camera), to recognize

preceding cars and other objects.

It is very difficult to fulfill very high accuracy

requirements from those systems by only single sensor.

Therefore the sensor fusion method is a hot topic. It takes

advantage of the fact, that different sensors have different

advantages by weighting each sensor depending on its

performance. For example, the fusion of MMW radar and

vision sensor is an effective combination.1) Because the

former has a good accuracy in longitudinal distance

measurement, but poor in lateral while the properties of the

latter are the exact opposite. Thus, this combination

provides good accuracy in both positional measurements.

Many sensor fusion methods have been suggested in the

literature using averaging, majority rule, Kalman filtering

or Bayesian estimation,2) 3) and higher accuracy is achieved

already. But those conventional algorithms tend to be quite

ad hoc. They depend on the specific combination of sensor

devices, algorithms or application systems they were

designed for. In the future, there will be many new sensors

and upgraded recognition algorithms, which will cause a

huge number of combinations. Therefore, the modular and

general fusion architecture is an important topic.

In this paper, sensor fusion architecture using a BN is

presented. This general probabilistic method can treat all

kinds of relations with statistical data in the estimation.

In chapter 2, general usage of BN estimation is

explained. Chapter 3 introduces the BN into the application

of MMW radar and vision sensor fusion. Then chapter 4

explains the new architectural structure we propose in this

paper.

２．BAYESIAN NETWORK ESTIMATION

2.1 How to build a model

A “Bayesian Network (BN)”, which is also called

“belief net”or“causal network”, is a visualized modeling

technique for statistical dependencies between variables

and also works as a probabilistic estimation machine.4) 5)

Figure 1 shows an example of a BN model. In common

BN model consists of nodes and arrows (DAG: Directed

Acyclic Graph). A node is a probabilistic variable, which

consists of exhaustive and mutually exclusive states. An

arrow is the causal relationship between nodes, from cause

to effect.

In this example, all variables are implemented with 2

states and it is assumed that target object is either a vehicle

or a pedestrian.
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Every node has a database inside, which shows the

strength of dependency between the parent nodes and itself.

In Fig. 1, those are expressed as tables p(C), p(R|C), and

p(W|C), and called conditional probability tables (CPT).

Those databases are built from historical knowledge about

how often the state occurred given fixed parent node’s

condition. In this paper, lower case “p(X)” means database

of BN, such as CPT.

2.2 How to calculate the estimation

Given a model structure and conditional probability

tables (CPT), the probabilistic estimation is now available.

Probabilities are assigned to all states of the classification

nodes. Namely, if 

P(C=pedestrian|given data) > P(C=vehicle|given data), the

target is very likely a pedestrian (C=ped). For example, if

the sensor detects that the radio reflection intensity is weak

in Fig. 1, P(C=ped|R=wea) must be calculated. 

To calculate it, the fundamental rule for probability

calculus can be used, which is also called Bayes’rule.

(1)

It is expressed it as the following general inference form

(2)

where P(Known) is scalar normalization factor. Now we get

(3)

Here we have to calculate the joint probability function

P(C, R, W) with 3 variables C, R, and W. BN offers a very

useful theorem called “chain rule” for a more compact

representation of P(C, R, W).

(4)

Using this rule, the joint probability function is described as

(5)

where the right terms are the given conditional probability

tables (CPT). Now (3) derives following equation.

(6)

From this equation the probability P(C=ped|R=wea) can

be calculated as 0.667, meanwhile P(C=veh|R=wea) is

0.333. Comparing them, the result 

P(C=ped|R=wea) > P(C=veh|R=wea) can be given.

By introducing additional acquired data, the probability

estimation may be improved. If the width is additionally

observed as narrow, the answer can now be calculated as

(7)

Now P(C=ped|R=wea,W=nar) is 0.994, which is more

accurate than before.

If a sensor’s performance changes, only the

corresponding node’s CPT has to be changed and other

CPTs or model structure can be left untouched. In Fig. 1,

the utilization of a different radar sensor might cause some

change in the reflection intensity resulting in a different

CPT of that node. However the structure of the model and

other nodes’ tables do not have to be modified.

To treat continuous variables such as length or position,

probability density functions (PDF) can be assigned to

these probabilities. Instead of CPT, conditional probability

density function (CPDF) is used. In this paper, PDF and

probability function are expressed as upper case “P(X)”,

while the databases of BN such as CPT and CPDF are

expressed as lower case “p(X)”.
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Fig. 1  Sample BN model for classification estimation
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2.3 BN sensor fusion

Figure 2(a) shows a typical example of the sensor fusion

BN model structure. There are two sensors A and B which

both detect the continuous variable “lateral position” Xa

and Xb respectively, to estimate true lateral position. CPDF

is stored in each node. The example of CPDF p(X) and

p(Xa|X) are shown in Figs. 2(b) and (c).

p(Xa|X) shows the statistically acquired probability

distribution database: “if the true lateral position X is given,

the sensor A outputs the data Xa in such distributions”.

Sensor CPDF could be expressed by a combination of

Gaussian and uniform distribution. If the sensor detects

objects with a reliability of 50%, the half of the sensor

outputs is wrong and has no relationship between the aimed

target’s true position X and the acquired data Xa. This can

be expressed by a uniform probability distribution.

2.4 Likelihood merger

Basic sensor fusion is done by a BN such as in Fig. 2.

From this function of the BN model and calculation, an

important idea of the fusion can be evolved, called

“likelihood merger”.

The equation of the fusion calculation to acquire the PDF

P(X|Xa=a, Xb=b) is shown below.

(8)

where p(X) is assumed to be constant, and the denominator

is also constant. So they are expressed as a normalization

factor Z.

It can be said from (8) that the fusion result P(X|Xa=a,

Xb=b) is calculated by merging p(Xa=a|X) and p(Xb=b|X),

which are the database CPDFs p(Xa|X) and p(Xb|X) where

Xa and Xb are given as a and b. In other words, by fixing

variable Xa, the CPDF p(Xa=a|X) is transferred into

“likelihood” of X. It means that “how likely X is when the

sensor A detected a”. In this paper, this kind of likelihood is

also called “unitable CPDF  depending on X. 

Figure 3 shows the idea of this “likelihood merger”.

There are two unitable CPDFs p(Xa=a|X) and p(Xb=b|X) in

Fig. 3(a), which are calculated from CPDFs and detected

data a and b. They are simply multiplied to get the resulting

PDF P(X|Xa=a, Xb=b) like Fig. 3(b). The highest peak of

that is the most likely result of X.

If the third sensor is added in this system, the third child

node will be added to the model in Fig. 2(a), while the

existing nodes are untouched. Then the third unitable CPDF

will also appear in Fig. 3(a), and the peak of the answer

PDF Fig. 3(b) will be steeper. This means that the

estimation will be more precise.

This idea is the essence of the Bayes theorem, and it will

be used in chapter 4.
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Fig. 2   BN causality model for lateral position
estimation
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３．BAYESIAN NETWORK SENSOR FUSION

MODEL

This BN estimation technique is applied in a real sensor

fusion practice. The experimental subject is a data fusion

system of MMW radar plus vision sensor for tracking

vehicles on a road.

3.1 System configuration and inputs

Figure 4 shows the data flow diagram of the

experimental sensor system using two devices, MMW radar

and vision sensor. There are many object-detection

algorithms, which are called recognition IPs (Intellectual

Properties). They output the target object properties such as

lateral center position or width. All outputs of the

recognition IPs are collected and fused at “Total decision

IP”, where BN is implemented. Some image recognition

IPs are using MMW IP output information, but it is only for

preconditioning.

Here are brief explanations about the recognition IPs, the

inputs of the BN:

1) Symmetry IP: searches the symmetry of the object

image, and detects the lateral position of the object.

2) Vertical edge IP: sums up the luminance gradient of the

image in vertical direction, and detects the width of the

object.

3) Shadow IP: searches the dark spot in the image, and

detects the center position/width of the object.

4) Tail lamp IP: searches the corresponding pair of white

spot in the image, and detects the center position/width

of the object.

5) Tracking IP: looks for the previously detected image of

the object in the current image, and detects the center

position of the object.

6) Blue sky IP: detects the environmental brightness by

scanning the upper part of the image.

7) MMW radar IP: analyzes radar wave reflection and

detects the lateral and longitudinal position, and

longitudinal relative velocity of the object.

8) Prediction IP: predicts the object position, width, etc.

using previous estimation result.

Each IP also outputs the detection intensity value, which

means “how far the recognition was successful”. For

example of the Symmetry IP, it outputs the value “how

symmetrical the image was”.

3.2 Bayesian Network fusion model

Figure 5 shows the BN model for this experimental

sensor fusion as an algorithm within the “Total decision IP”

in Fig. 4. This model consists of several layers, which help

categorizing of the nodes. Upper layers are the true

positions or properties of the object that are the targets of

the estimation. Lower layer are the detected values that are

caused by upper layer nodes.

The core part of this model is e.g. “Lateral Position”

node and its children “Lat”. nodes. This structure means

just like Fig. 2 : several IPs detect the lateral position of the

same object.

On the other hand, each recognition IP has the Boolean
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Fig. 4   Data flow diagram of experimental sensor
system
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node “detection algorithm validity (weighting factor)”,

which is the most characteristic point of this model. This

factor means “how much the detection algorithm is

adequate for the current situation and target object”, and

“how much this IP is reliable now”. If the probability of the

state “yes” of this factor is higher, it is more reliable, and

the acquired data will have a bigger impact on the final

result. If that probability is zero, there is no relationship

between the true and the acquired data.

This weighting factor is determined by other related

nodes. For example in Fig. 5, the Symmetry IP’s weighting

factor depends on the “Contrast of the Target Image”,

“Classification” and “Detection Intensity”. It means: this IP

may be not trustworthy if it is night and the image is not

clear, or if the target object is something which is not

necessarily symmetrical such as a road structure, or if the

symmetry of the image is weak. This model part represents

and defines the reliability causality of each IP.

The weighting factor node is also connected with

“detected lateral position” node, which is at the lowest layer

in Fig. 5. This means: it affects the unitable CPDF

(likelihood), the impact of detected value on the true value.

If it is night condition and the weighting factor is low, the

unitable CPDF p(X=x|A) in Fig. 3(a) must be adapted

according to the condition as shown in Fig. 6. The lower

the weighting factor is, the more the uniform distribution

becomes dominant.

BN allows a clear description of the fusion algorithm

strategies. It based on the detection mechanism using causal

model, therefore it is very easy to understand, analyze weak

points, add/remove sensors, and improve the fusion

algorithm. This advantage is very important as the models

tend to become huge.

４．ARCHITECTURAL STRUCTURE

4.1 Architectural problem

The above BN sensor fusion algorithm achieves good

estimation accuracy. However, it still has an architectural

problem. If only a single recognition IP algorithm is

changed, we also have to change the Total decision IP. This

is because the information concerning the recognition IP’s

performance is not stored in the respective IP, but in the

Total decision IP as CPDF.

4.2 Modular Bayesian Network Architecture

In order to reduce the development effort, a modular BN

architecture is proposed.

To eliminate the generation of unitable CPDFs from the

Total decision IP, the BN model is separated into

recognition IP parts and a Total decision IP part. Figure 7(a)

shows the part of the separated models for Symmetry IP as

an example of recognition IP parts. This model shows how

to output the unitable CPDF as explained in section 3.2.

This means that each IP considers its own accuracy and

reliability, using previously estimated and currently

acquired information, and sends the unitable CPDF to the

Total decision IP. Those functions are now inside of the

“Symmetry” block in Fig. 4, not in the “Total decision”

block.

Figure 7(b) is the partial model extracted from Total

decision IP part BN model. This part is now simplified

because the unitable CPDFs are now calculated in the

recognition IP parts, which means that the function is

distributed. Only the “likelihood merger” calculation, as

explained in section 3.2, and the peak search are done in

Total decision IP. The Total decision IP block is now

independent from sensor devices. All inputs are likelihoods

of the estimation target variables, and Total decision IP

does not care what kinds of devices are used.

This architecture makes the fusion system quite modular.

When an IP algorithm changes, the IP developer must only

change its CPDF database. This means that the only

corresponding recognition IP block in Fig. 4 is changed,

and the Total decision IP block does not have to be

modified.
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This modularity offers reusability. If a recognition IP is

removed, only corresponding node in Fig. 7(b) has to be

removed. This means, one of unitable CPDFs is deleted

from equation (8). It is very easy operation.

Addition of new sensor or recognition IP is also easily

treated in this architecture, if it outputs the data as united

CPDF format. Such “platform function” will be an

important ability for sensor fusion architecture, because it

allows easy integration of various sensors from various

sensor suppliers.

５．EXPERIMENT AND RESULT

The proposed architecture and algorithm was validated

on real data.

Figures 8(a) and (b) show the estimated lateral position

PDF expressed as a downward graph under the car image.

Figure 8(a) is the result using the output of MMW radar IP

alone, whereas Fig. 8(b) is the fusion result using every IP.

In Fig. 8(b), the estimated width PDF is also shown as an

upward peak, which indicates the right edge position of the

object.

The lateral position PDF peek of (b) is steeper than that

of (a). It means that the fusion result is more reliable than

MMW radar alone. Generally speaking, it was checked that

fusion result achieves better accuracy than MMW alone,

and almost same accuracy with the conventional fusion

algorithm.

It was also checked that such addition or removal of the

IP results is easily treated by simply adding or removing the

corresponding unitable CPDF from multiplication at Total

decision IP part. Therefore it is also said that this fusion

algorithm is quite modular.

６．CONCLUSION

This paper offered new architecture of the sensor fusion

by use of modular Bayesian Network.

Bayesian Network describes the fusion system in a

causality model, which makes the fusion algorithm easy to

understand. This merit is important if the fusion algorithm

is big and complicated. It also helps to modify the

algorithm when the system is changed. The addition of the

new sensors and recognition algorithms will be easily

Fig. 7   Examples of the separated BN models
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treated by adding new nodes in the existing BN model,

while the existing nodes are untouched.

This architecture defines “unitable CPDF” as a

standardized output format for all sensors and recognition

algorithms, and synthesizes them in a mathematically well-

defined, modular way. Therefore, the reusability of each

recognition algorithm is greatly increased. Additionally,

sensors from different suppliers can be easily combined on

this standard platform.

Validation was done using real data. The accuracy of the

merged data was as good as conventional fusion algorithm,

while the modularity is drastically increased.

Higher accuracy will be achieved mainly by adding new

helpful recognition algorithms, or by improving existing

recognition algorithms. But a more detailed model and a

more precise database of BN will also make the estimation

more powerful and accurate.

A disadvantage of BN is their need for calculation

performance. In the above application, this problem was

reduced by separating the model into the modular Bayesian

Networks we proposed. Further research can be done on

this topic.
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