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This paper explores the use of Ultra-Wideband (UWB)

radar for tracking multiple moving humans. Because the

ability to track human movement is useful for the wide

range of security and safety applications, a number of tech-

nologies have been pursued for human tracking. Computer

vision has limited performance in poor visibility conditions,

while the performance of infrared imagers can be tempera-

ture dependent. Human LADAR signatures may not highly

discriminable from other moving clutter, and LADAR per-

formance degrades in dusty and foggy conditions. UWB

radar can provide a complementary technology for detecting

and tracking humans, particularly in poor visibility or

through-wall conditions, as it is little affected by dust and

moisture. While this paper considers the problem of tracking

humans based solely on UWB radar signals, UWB radar

technology can profitably joined with other human tracking

modalities to provide more robust tracking and detection in

a wider variety of operating conditions.

Compared with RF, microwave, and mm-wave radar 1) 2),

UWB radar provides high-resolution ranging and localiza-

tion due to the fine temporal resolution afforded by its wide

signal bandwidth 3) 4) 5). However, the complex scattering

behavior of UWB waveforms poses additional signal pro-

cessing and tracking problems. In our previous work,

Chang, et. al., developed an Expectation-Maximization

Kalman Filter (EMKF) algorithm for UWB radar-based

tracking of a fixed number of humans 6). However, because

this prior work assumes a fixed number of targets, it is nec-

essary to develop a Multi-Target Tracking (MTT) solution

which allows for changing numbers of targets, false meas-

urements (clutter), and missed detections (temporary occlu-

sions).

An abundant MTT literature has considered military radar

and computer vision tracking applications 7) 8) 9). However,

the key differentiator of MTT for UWB radar-based track-

ing versus traditional applications is the multitude of obser-

vations (multipath scattering) per target in each scan, due to

the short spatial extent of the transmitted UWB signal pulse

width 10). Because the multi-path signals have a cluster like

nature, a two-level data association problem: individual

scatters must be properly associated with the correct clus-

ters, and the clusters must be associated across radar scans

to generate a consistent track of human movement. Wolf

recently developed a Multiple-Hypothesis Tracking of

Clusters (MHTC) algorithm for sorting and tracking extra-

cellular neural recordings 11), whose measurements arrive in

an analogous cluster-like nature. We develop a variant of

Wolf’s algorithm for the UWB radar-based multi-human

target tracking problem, which extends our previously

developed algorithm to the more realistic case of varying

target number. Recently, Lau, Arras, and Burgard 12) have
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also developed a related technique for multi-hypothesis

tracking of groups of humans using LADAR. In addition to

a focus on a different signal type, our method has a different

decomposition of the probability densities needed to select

the best joint clustering and track association hypotheses, as

well as an explicit formula for computing the model evi-

dence via a Laplacian approximation.

Section 2 presents the simple UWB radar multipath signal

model that underlies our approach, and shows that wave-

form time-of-arrival can be interpreted as a point process

governed by a Gamma probability distribution. Section 3

reviews our previous EMKF tracking algorithm for a fixed

number of targets. Section 4 presents our proposed MHTC

algorithm for tracking a variable number of humans, while

Section 5 presents experimental results to illustrate and vali-

date our approach.

As compared with traditional narrow band radar, the wide

bandwith of UWB radar (e.g. a 2 GHz bandwidth centered

at 4GHz frequency in our experiments) allows for radar

waveforms that are highly localized in time. A typical UWB

waveform pulse, such as shown in Fig. 1, has a duration of

～0.5-1.5 ns. After the pulse is emitted, the scattered wave-

forms are recorded for a fixed interval of time. This interval

establishes the effect range of the radar, and the data record-

ed during one interval is termed a“scan.”

2.1 UWB Scattered Waveform Model

This paper considers a mono-static radar configuration

where waveform pulses are transmitted from a single anten-

na and the scattered waveforms are received by a collocated

antenna. An effective human detection and tracking strategy

requires a model of UWB radar waveform propagation and

interaction with the human body. A perfectly reflecting tar-

get, e.g. a metal plate with an infinite area, returns the

impinging UWB electromagnetic wave along a single-path.

However, for targets characterized by complex shapes

whose spatial extent roughly equals the transmitted UWB

signal pulse width, e.g. the human body, the returned UWB

radar signal consists of multipath components 10), as the

impinging UWB electromagnetic wave scatters independ-

ently from different human body parts at different times

with various amplitudes (depending on the distance to the

body part and the size, shape, and composition of the scat-

tering part). Each of these different scattering pathways can

be considered one component of the returned UWB radar

signal. Thus, the returned UWB radar signal w(t) can be

approximated by a specular multipath model 13)14):

with aj and nj respectively representing the amplitude and

time-of-arrival (TOA) of the jth component of the received

signal, and p(t) is an elementary waveform shape, e.g., the

transmitted radar waveform in free space. For example, the

waveform is recorded over an interval , which

corresponds to a range of 

, where c is the speed of light (see details in 14)). The specu-

lar multipath model is an approximation whose simplicity

allows for real-time processing without compromising

UWB radar’s high time-resolution capability. Each path’s

TOA and amplitude can be estimated by the applying the

CLEAN algorithm (with a given waveform template) to a

scan 14) 15).

CLEAN Algorithm Summary

1. Input :Waveform shape template v(t); and detection

threshold Tclean normalized at 1 meter.

2. Initialize : Form initial residual waveform d0(t) = w(t) for

a scan. Set counter i = 0.

3. Signal Detection : Compute cross-correlation rvd (τ)

between v(t) and di(t); the time-index associated to the

maximum magnitude of rvd (τ) is the ith estimated TOA:

The cross-correlation at n̂i (t) is the ith estimated amplitude: 

If âi (t) < Tclean, STOP.

2.　UWB Signal Modeling

Fig. 1　Measured UWB waveform (left) and measurement
setup

（1）



特　　集

−59−

4. Increment the iteration counter : i ← i + 1.

5. Residual waveform update:

6. Iterate : Go to step 3.

Since UWB radar scatters from both stationary and moving

objects, all scatters obtained from a complex test environ-

ment must be analyzed for human target candidates. To

reduce the high computational cost associated to such analy-

sis, a moving target indication (MTI) system, summarized

in 14), is used to eliminate highly human-unlike scatters.

2.2 Human Scattered Waveform Characterization

In order to understand the basic scattering behavior, we con-

structed a database of UWB radar scans obtained while a

human walked randomly in an open field within the vicinity

of the radar (see details in 6)). The radar returns were cali-

brated and processed using the CLEAN algorithm to extract

the amplitudes and TOAs of the scattering components.

These returns were then manually segmented to ensure a

correct data association between detected scatter paths and

the human target. To characterize scattered waveforms from

moving humans, we introduce two variables: human range

and adjusted time-of-arrival. The human target’s nominal

range is defined as the first moment of the power range pro-

file r 14):

where is the j th scattering path’s amplitude nor-

malized at 1 m (where the free space loss is compensated for

the round-trip range), Rj =[nj · c ]/2 is the j th scattering path’s

range1, nj is the TOA of the j th scatter component, and is a

set of path indices associated with the human target. It is

convenient to introduce an adjusted TOA (ATOA) variable:

where r is the range to the human, and K is a constant offset

related to the radar delay spread of a typical human.

Our studies have found that the ATOA histograms have a

behavior consistent with a point process, thus he mono-stat-

ic UWB radar scattering process for walking humans, under

the specular multipath model in Equation (1), can be inter-

preted as point process governing the ATOAs. After study-

ing common univariate distributions, we found that the

ATOA histogram was best fit by a Gamma distribution

whose mode lies at the human target location and whose

probability density function (PDF) is:

for 

where Γ(·) is the Gamma function, and Κ, θ are respectively

the Gamma distribution’s shape and scale parameters2. In

our application, the Κ parameter is a fixed value characteris-

tic of humans, which is estimated from the database at Κ =

7.60 in Fig. 2. The θ parameter is related to target location,

and is estimated during the tracking process. While our

choice of the Gamma distribution was based on an empirical

study, we note that the Gamma distribution exactly models

the distribution of arrival times for Poisson distributed

events. It is thus a plausible model for multi-path human

scatter ATOAs.

For simplicity of exposition, this section summarizes our

prior work 6), which forms the basis for the new develop-

ments of this paper. First we show how to track a fixed

number of humans using an Expectation-Maximization

Kalman Filter (EMKF) algorithm, where the expectation-

maximization (EM) algorithm simultaneously associates

individual scatter paths to each target and estimates each tar-

get’s state. The next section, which represents the new con-

tributions of this paper, shows how to add an MTT capabili-

ty to this framework via the use of a cluster-based MHT

procedure. 

We define the state vector x of a human target as X =, [ r

v]T where r and v respectively denote the range and velocity

(time rate of change of the range) of the human target, and

(・)T denotes the transpose. For simplicity, we use a simple

3.　Tracking a Fixed Number of Human Targets

（3）

（4）

Fig. 2　Histgram of multi-path ATOA, with Gamma
distribution fit.
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random walk model to model human dynamics:

where ω is zero-mean white Gaussian noise with covari-

ance q2, B = [0  1]T, ΔT = tk+1-tk. The covariance of the

process noise Βω is equal to Q = diag(0,q2) . Note that our

algorithm readily incorporates more complicated target

dynamic models.

Based on the characterization of human UWB scatter as a

point process, we model the multi-target multi-path scatter-

ing process as a mixture model, where each mixture compo-

nent is a Gamma distribution associated with an individual

human target. If there are G human targets in the observa-

tion environment, where G is known, the likelihood of the N

TOA observations at time tk,  , is given by:

where is the set of model parameters at time tk:

.   Let and  

respectively denote the state estimate of the gth human target

and its error covariance at time k, given measurements up to

time l.

An Expectation Maximization Kalman Filter (EMKF)

algorithm to update the G target state estimates from the

radar scan obtained at time tk is given below. It unites a

basic Kalman Filter (KF) state estimator with a data associa-

tion process (implicitly carried out by the EM-algorithm)

that associates individual multi-path returns to specific tar-

gets. The path-to-target association probability is modeled

as the latent variable of the EM algorithm. Like any tracking

algorithm, models for the uncertainties in the dynamic

process and the measurements are required for effective

tracking. The measurement error covariance used in the

algorithm is the sum of a fixed term that describes the inher-

ent noise in the radar processing circuitry, plus a data

dependent term that fact that the measurement quality

depends upon the number of multi-path returns obtained in a

single scan (finite sample effect).

1. Input : TOAs of the G humans scatter paths at

time k (calculated by applying the CLEAN algorithm to

scan k).

2. Initialize: Initialize constant parameters: Gamma distribu-

tion parameter Κ (fixed for typical humans), offset K (see

footnote 2), dynamic model transition matrix A, measure-

ment matrix H = [1 0], process noise Q, the constant part

of range measurement error covariance Rfixed, and itera-

tion threshold TEM. Initialize the mixture model parame-

ters −typically the estimate from tk−1 serves

as the starting point. Set counter i = 0.

3. KF Dynamic propagation step : Given the estimate

with at  time k−1, calculate the state

estimate and its covariance at time k as

Set the initial estimate of the human range

4. EM algorithm: initialize the EM algorithm (steps 5 and 6)

iteration counter, i = 1.

5. EM E-step : Using the current ith iteration parameter esti-

mates  and measurements Y , compute the condi-

tional expectation  as

where is the probability that multi-path component j

is generated by target g-i.e., the TOA observation to target

range measurement association probability. The ATOAs are

calculated by the current ith iteration human range estimate

as  

6. EM M-step : Given , find the parameter estimates

that maximizes the complete-data log-likelihood

function:

(7)

which models the probability, given the set of all data asso-

ciation assignments Z = {zjg}, that the multi-path range

measurements are generated by G targets located at posi-

tions parameterized by . Using the Lagrange multiplier

method with the constraint of  and

, one obtains the following estimates of  

and :

（5）

（6）
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and

The range estimate at the mode of the distribution is:

7. Iteration criterion : If  , 

go to step 5 with i←i＋1. Otherwise, each TOA nj,k is 

assigned to the g*th human via          .

Set the estimate of human range  , and the

estimation error variance

8. Measurement Update : Set the human range measurement

. Update the Kalman gain  , the a posterior

state estimate  ,  and the error covariance           as

(8)

Experimental validation of this method for the case of a

fixed number of humans can be found in 6).

In a realistic environment, the number of human targets will

vary with time, as targets may go in and/or out of the obser-

vation volume. Additionally, the tracking system should

also be able to handle clutter (e.g. non-human objects and

false measurements) and missed detections (temporary

occlusions), allowing for an appropriate segmentation

process, simultaneously. The algorithm summarized above

also has no inherent mechanism to construct consistent

tracks across multiple scans. Thus, it is necessary to develop

a Multi-Target-Tracking (MTT) solution for these practical

realities. The MTT technique should solve two types of data

association problems: (1) all multipath scatter components

must first be segregated according to their generating source

(the observation–measurement association problem or the

multipath scatter–cluster association problem); and then

each scattering cluster must be associated to clusters from

previous scans, thus tracking the UWB scattering response

of putative human targets (the measurement–target or track

assignment association problem). This differes from the

standard MHT problem which only focuses on the single

track assignment data association problem. 

We propose to use an Multi-Hypothesis-Testing (MHT)

approach which maintains many possible data association

hypotheses and propagates the corresponding target state

estimates for each hypothesis, implicitly deferring decisions

if necessary in anticipation that subsequent data measure-

ments will resolve any ambiguity 16). However, unlike tradi-

tional MHT in military radar and computer vision tracking

applications 8) 9), this problem has the additional complexity

that targets are only observed indirectly via clusters of scat-

tering path measurements. To incorporate this additional

complexity, we adapt a recently developed MHTC method

11) that was originally developed for dynamic sorting and

tracking of neural signals. This algorithm propagates vari-

ous possibilities for how to assign measurements to clusters

and then clusters to existing target tracks. It uses a delayed

decision-making logic to resolve data association or track

association ambiguities. It also maintains several options,

termed model hypotheses, for how to cluster the observa-

tions of each interval. This combination of clustering nd

tracking in a single solution enables MHTC to robustly

maintain the identities of cluster-producing targets.

4.1 MHTC Framework

The framework summarized in the previous section must be

extended in several directions to allow for robust tracking of

variable numbers of humans in cluttered environments.

Section 4.1.1 introduces the more complex types of

hypotheses which must be considered to solve the MTT-

MHT problem of UWB-radar tracking of humans. This sec-

tion also defines the overall hypothesis probabilities that

must be calculated during the tracking process. In essence,

the ensuing sections expand the composite hypothesis prob-

ability into its components. Section 4.2 shows how to prop-

erly use the clustering/tracking results of scan k−1 as a

Bayesian prior for the processing of scan k. Section 4.3

briefly summarizes the hypothesis tree structure that incor-

porates both data association hypotheses across scans and

various clustering hypotheses within scans. Section 4.4 then

summarizes the MHTC algorithm, while Section 4.5 inte-

grates all of the technical developments of this section to

define the global hypothesis probability that is at the heart

of the tracking algorithm.

4.　Tracking a Variable Number of Human Targets

特　　集
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4.1.1 Hypothesis Terminology

We define two types of hypotheses in MHTC. A model

hypothesis represents a possible clustering of the multipath

observations, and is denoted by Mm. Different models

account for differing numbers of humans, where the number

of humans is denoted by Gm. The l th data association or

track association hypotheses,                        , l=l,K,L,

assigns each cluster in a given model hypothesis to a target

or track (or marks it as spurious)4: The set contains the

assignments of the model’s clusters to known targets,

K                     , where each indexed pair (g,

j) matches the gth cluster to the j th human target;

K           indexes the model’s clusters that are iden-

tified as new human targets; and                 K            holds

the indices of false clusters (spurious groupings of outliers,

clutter, or similar clustering errors) in the current model.

Note that Nτ, Nv, , and Nφ are the respective cardinalities of

these sets, and a legal hypothesis must assign every meas-

urement (a clustering of the data) to only a single target (or

classify it as false) and may only assign at most one meas-

urement to each target so that the total number of measure-

ments is Gm ＝Nτ＋Nv＋Nφ. 

We call the combination of a data association hypothesis

and its parent model hypothesis a particular joint hypothesis

at time k,     .   The joint hypothesis 

thus postulates a complete set of data associations for time

k, including the multipath TOA-to-cluster (observation-to-

measurement) associations in Mm(l) and the cluster-to-human

(measurement-to-target) associations in hl. A particular joint

hypothesis is combined with its parent hypothes is

at time k−1 (we consider M model classes for each

parent hypothesis) to define a global hypothesis,

, which includes the full history of all

model and data association hypotheses from time 1 through

k. Finally, it is convenient to define Ωk as the set of all L

surviving global hypotheses              and all data Y l:k

from time 1 through k, which thus provides all relevant

measured and hypothesized information at time k:

4.1.2 Probability Models

Given a set of targets tracked in the parent hypothes is

, the probabilities of the existence of tracked targets

and appearance of new measurements in radar scan at time k

must be modeled. For simplicity, let us assume that the

probability that the jth existing target is detected (i.e., pro-

duces a multi-path cluster) is considered a Bernoulli trial

with probability Pd,j. If the target is detected, the associated

range measurement is expected to appear near the tar-

get’s predicted location with a Gaussian distribution, 

where the Gaussian PDF is denoted by fN, the mean and 

covariance are the predicted measurement

and the innovation covariance  ,

respectively, provided by the dynamic update equations (6)

of the Kalman filter.

The numbers of new targets or false clusters appearingin

a given time interval are each modeled by a Poisson distri-

bution with respective rates λv and λφ. If a measurement

originates from a new target or false cluster, it may arise

anywhere in the observation volume V with a uniform PDF:

The parameters Pd,j, λv, and λφ are set by the user and may

vary across scanning intervals.  Experiments indicate that

the precise values are not required for effective operation of

the algorithm.

4.2 MAP Clustering for Human Tracking

In order to improve clustering and tracking, we convert the

EM algorithm to a Maximum A-Posteriori (MAP) optimiza-

tion rather than an Maximum Likelihood (ML) optimization

of the Gamma mixture model proposed in previous sections.

The MAP method uses information from the preceding

scans as a prior to bias the propbabilities of the joint hypoth-

esis in the current scan, while still admitting changes in the

number of human targets. Using Bayes’rule, the MAP

parameter estimates can be derived as

(10)
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where represents the mixture model parameters at time

step k, for a given model Mm. In Eq. (10), the first term rep-

resents the likelihood of the current observation Yk given

parameter estimates, and the second term represents a prior

probability which provides the parameter distribution based

on previous observations.

4.2.1 Likelihood and Prior terms

In the likelihood term of Eq. (10), an outlier distribution

(defined as a uniform distribution with magnitude 1/V over

the observation volume) as added to the Gm Gamma mix-

ture components in Eq. (5) in order to capture false positives

of detected TOAs. Hence, the mixture likelihood term can

be represented as

(11)

where

since the mixture weights must sum to unity. After incorpo-

rating the observation-to-measurement association indicator

Z, the complete data log-likelihood is a modified form of

Eq. (7):

(12)

Next, in the prior term, the model parameters are assumed to

be independent across mixture components and across each

parameter; hence,

(13)

where the diffuse priors on the parameters          and , 

, are given as a constant, since the parameters are are less

informative model elements than the range of each cluster

in practical human clustering and tracking consistency.

To establish priors on the cluster range, the gth cluster range

in time k is sought near to any of the cluster ranges

found in time k − 1, and thus a Gaussian mixture (based on

Eq. (9)) involving all of the cluster ranges at tk−1 is used as

a prior. To allow for the possibility that the gth cluster rep-

resents a new human that was not observed in scan k−1, a

uniform distribution component defined over the observa-

tion volume V is included as well. Hence, Incorporating Eq.

(9) into (13), the complete prior on the mixture parameters

is 

(14)

(15)

where the mixture weight   is defined as

where λ0 =λv +λφ is the combined expected number of

newly appearing humans and the false clusters in a scan.

4.2.2 Extending EM to Account for Cluster

Location Priors

Note that the prior term in Eq. (14) resembles the mixture

likelihood term in Eq. (11), and would in fact share the same

difficulty of providing closed-form solution for the optimal

parameters. Similarly, the EM algorithm can be applied by

introducing a set of cluster association indicators Z = {ζg,j}

that indicates cluster membership to a particular human tar-

get,

Employing the classical complete-data approach, the cluster

association indicators and the mixture prior defined term in

Eq. (14) determine the complete-data log prior on the mix-

ture parameters:

(16)

Rewriting Eq. (10) to include the TOA membership indica-

tors Z as well as the cluster association indicators Z gives

the complete-data posterior,

(17)

As it is convenient to work with the log-posterior, take the

logarithm of Eq. (17) and substitute in Eq. (12) and (16),

(18)

This complete-data log-posterior is the object equation of

K
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the EM algorithm’s iterations, which follow.

E-Step : As in the classical EM algorithm, given the parame-

ter estimates from the M-step, the expectation of each TOA

membership indicator,        is:

The expectation of the cluster association indicators, i.e.,

,  has an analogous form:

M-Step : using the Lagrange multiplier method with the con-

straints of  and  , one obtains

the following estimates of , and :

and

(19)

where the estimates remain the same as the classical ML

clustering version in Section 3, since the prior term in Eq.

(18) is independent of the parameters and .

However, the estimate of does not have a closed form

formula due to the ATOA’s dependency on the cluster

range as in Eq. (3), as well as the scale parameter

dependency on the cluster range as in Eq. (19) followed by

Eq. (3). However, a numerical solution can be provided by

using Newton’s method as

(20)

where

4.3 Hypothesis Tree Structure

As shown in Fig. 3, the MHTC algorithm extends the tradi-

tional MHT hypothesis tree to include model hypotheses as

well as data association hypotheses: to each parent node

from tk−1 there are multiple model hypotheses describing

various ways that the data in scan k can be clustered, and

each of these hypotheses has various children hypotheses

about how the clusters in scan k can be associated to target

tracks in scan k − 1. If L global hypotheses exist/survive at

time (k −1) and we consider M model classes spawned for

each of L parent hypotheses, then (LM) model hypotheses

are formed at time k, each of which is optimized according

to the MAP EM procedure of Section 4.2. By use of

Murty’s algorithm 17), only the L best data association

hypotheses are retained at time k from (LM) data association

hypotheses, succeeded by the (LM) model hypotheses.

4.4 Overview of the MHTC Process

This section integrates the technical developments of the

previous sections to summarizes the MHTC process of com-

bined clustering and multiple hypothesis tracking.

Step 1. Initialize the EM and Gamma mixture model

parameters (see the initialization of the EMKF algorithm in

Section 3).

Step 2. Given k−1 and the measurement update from time

k−1 (see Step 8), for each parent hypothesis predict the tar-

get states (and their covariances) using the Kalman Filter

dynamic update equations in Eq. (6).

Step 3. For every parent hypothesis in k−1, a set of candi-

date mixture model classes {Mm} are postulated, which will

be used to cluster the current data , pre-

K

K

Fig. 3　MHTC hypothesis tree structure, illustrating the
integration of model hypotheses into the traditional
MHT framework, using L = 4 and M = 3. Squares
represent model hypotheses (i.e., clustering output)
and black circles represent surviving data associa-
tion hypotheses at each time step.
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processed by the MTI system and the CLEAN algorithm. A

diversity of model classes are required primarily because the

number of clusters Gm is unknown, so that various model

orders are attempted and each resulting model hypothesis is

analyzed. To save computation in very unlikely model class-

es, one can calculate the probability of a model class and

test it against a threshold β:

(21)

An expression for this probability, which depends on the

probabilities of target detection, new targets, and false clus-

ters, is provided in Table 1. Model classes that do not pass

this thresholding test are discarded.

Step 4. For each model class, optimize the assignment of

scattering multi-paths to individual model clusters, and opti-

mize the cluster parameters using the MAP EM algorithm of

Section 4.2.2. Note, to carry out this step, each model

requires a set of “seed” clusters. The seed clusters are

generated by starting with the clustering solution of the pre-

vious step, and then by adding or removing clusters accord-

ing to the different hypotheses associated with each model.

For example, new seeds are placed at the sensing boundaries

to account for incoming targets; previous clusters are “split”

into two clusters to allow for possible misclustering in the

previous step; random seeds are added to account for spuri-

ous clusters, etc. (see 11） for more details).

Step 5. The evidence of each model hypothesis is 

calculated as             , possibly using the

Laplace’smethod 19）.  For computational savings, one could

prune highly unlikely models as above. 

Step 6. The core step in MHT generates the data associa-

tion hypotheses,  . Murty’s L-best ranked lin-

ear assignment algorithm is used to produce only the L best

data association hypotheses from each parent cluster

hypothesis, obviating the need for full enumeration of all

possible data associations.

Step 7. Suppose that a total of ~M model hypotheses exist

at this time, each of which has now spawned L data associa-

tion hypotheses. From the (ML) hypotheses that have been

generated, the most probable L global hypotheses (consist-

ing of a joint model and data association hypothesis) are

selected. Evaluating each model and data association

hypothesis together with its parent hypothes is       , the

probability of each new global hypothesis 

can be calculated, as detailed in Section 4.5. This step pro-

vides the set of L-best global hypotheses in Ωk.

Step 8. Finally, for each            , the hypothesized data

associations hl, along with the optimized parameters

of the corresponding model hypothesis, are used to update

the Kalman Filter measurement update equations in Eq. (8).

4.5 MHTC Probabilities

The final hypothesis selection of the MHTC algorithm for

scan k is based on the global hypothesis given all collected

data,  . The expression for this probability

includes all relevant measures about the parent hypothesis,

model hypothesis, and data association hypothesis. This

global hypothesis probability may be expressed as

(22)

where C is a normalization constant, Γ is the set of indices

of all legal data association hypotheses given the model

hypothesis Mm(l). The factors (P1,l, P2,l, etc.) have natural

interpretations for why they influence the global hypothesis

probability and are described in Table 1. The proof for

Eq.(22), which entails a combination of Bayes’Rule, the

chain rule, and the Laplace’s method for approximating

integrals, may be found in 11), along with a derivation for the

expressions in Table 1.

To calculate L-best data association hypotheses {hl} from

each model hypothesis Mm in Step 6 of the MHTC algo-

Fig. 4　MHTC process diagram. See text for description of
each step. Steps 1-8 indicate core clustering and
hypothesis tracking procedures
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rithm, only the product (ρ1, l,ρ2, l, etc.) needs to be exam-

ined, as all other factors in (22) are identical for a given

model hypothesis. Thus, we refer to this product as the data

association hypothesis plausibility. To formulate the data

association problem such that Murty’s algorithm may be

applied, we construct a cost matrix for the corresponding

linear assignment problem of mapping current measure-

ments to known targets (including the notions of new targets

and false clusters), where the total cost of an assignment

hypothesis is equivalent to using (P1,l P2,l). See 11) for

details.

5.1 Experimental Setup

To test the MHTC algorithm, UWB mono-static radar meas-

urements were conducted for time-varying number of

human targets walking in and out of the radar observation

volume of a Time Domain Puls On 210 monostatic UWB

radar. As a ground truth to evaluate the radar tracking per-

formance, two LADARs (SICK AG short range LIDAR)

were placed facing each other to sense the observation vol-

ume, simultaneously, with the scanning azimuth angle in the

range [0◦, 180◦] and with a scanning frequency of 75 Hz. As

shown in Fig. 5, LADAR1 was placed coaxially above the

radar,while LADAR2 was placed at 8.915 m away from

LADAR1 along the longitudinal axis through LADAR1.

The height of the radar was 0.483 m (around knee level),

and the height of LADAR1, and LADAR2 was 1.321mand

1.118m (around chest level), respectively. The locations and

orientations of the radar and both LADARs were calibrated

using a procedure similar to the calibration method in 6).

The experiment was also recorded on video with a rate of 30

frames/sec. The radar range was set at 0 m to 9.087 m. The

radar scanning period ΔT was 0.0787 sec/scan = (12.7

scans/sec)-1, and the waveform sampling resolution was

41.33 ps with the range resolution of 0.0062 m. Time syn-

chronization between the LADARs was automated, since

both were connected to the same computer. Synchronization

between the radar and LADARs was aided by the use of a

predetermined and distinctive motion of the first human to

enter the common sensing range. To test the 1-dimensional

tracking performance for a single transmitting and a single

receiving antenna radar system, the humans under test were

instructed to walk in predetermined sectors so that no occlu-

sion would occur.

Fig. 6(a) shows 572 unprocessed scans (each column

represents the magnitude of a single scanned waveform over

the sensing range, where the waveform magnitude is scaled

from 0 in black to 3000 in white. Magnitudes over 3000 are

clipped to 3000). Moving human targets’trajectories can

be seen in Fig. 6(a), while the horizontal patterns in the near

range (< 2.2 m) represent direct antenna coupling effects

from the transmitting antenna direct to the receiving anten-

na. The horizontal patterns in the far range around 8.8 m

represent the scatters fromthe LADAR2 supporting struc-

ture. During the interval from scan 150 to 200, the

LADAR2 supporting structure was on the blocked line-of-

sight by a standing human so that the scatters from the struc-

ture were not observed distinctly. Fig. 6(b) shows a video

image, LADAR range measurements, and the measured

UWB radar scan 493 of two walking humans, as recorded

by synchronized video camera, two LADARs, and a mono-

static UWB radar, respectively. In the radar scan, scattering

patterns of two humans are shown around at the ranges of

3.5m and 4.5 m, where the LADAR range measurements are

observed at the corresponding ranges. It is noted that the

LADAR measurements for the human at 4.5 m far shows an

elliptical shape of the human’s chest level cross section by

using two LADARs. In the radar scan, direct antenna cou-

pling effects and the scatters fromthe LADAR2 supporting

structure were sensed at near range (< 2.2 m) and far range

(～8.8m), respectively.

5.　Experimental Results

Fig. 5　Experimental setup picture.



5.2 Results on the MHTC algorithm

To apply the MHTC algorithm to the radar measurements in

Section 5.1, the EM and Gamma mixture model parameters

were initialized as κ = 7.60, K = 0.533 m, Pd,j = 0.98, λv =

0.01, λφ = 0.0105, β = 0.7, and L = 6. The radar measure-

ments were processed by the MTI system to eliminate

antenna coupling effects and static background scatters, and

processed by the CLEAN algorithm to estimate the ampli-

tudes and TOAs (or range) of the scattering multipath com-

ponents, as an example for scan 493 is shown in Fig. 7(a).

Fig. 7(b) shows theMAP EMclustering results for given two

seeds from the a priori estimates of ranges in the KF

(              =3.4734 m and            =4.8518 m)7. The resolved

7 TOA observations were associated with 2 (hypothetical)

clusters to construct a Gamma mixture model so that their

range (at the mode of each Gamma distribution) was com-

puted to be so that two clusters’ranges (or range measure-

ments) of each cluster were provided as = 3.6868m and

= 4.8337 m at the mode of each Gamma mixture com-

ponent8. Note that different number and/or range of seeds

can generate various model hypotheses in the MHTC algo-

rithm. Fig. 7(c) shows the probability distribution of an

expected cluster–target association between the cluster

range measurement appearance and the target’s predicted

location with Gaussian distributions for the existing targets

and the uniform distribution for the new target or false clut-

ters (relevant to Section 4.1.2 and Eq. (14))9. Fig. 7(b) and

Fig. 7(c) illustrates the likelihood termand the prior termin

Eq. (10) for MAP clustering, respectively. Fig. 7(d) shows

all possible combinations of the cluster–target associations

based on the aforementioned model hypothesis, which can

include the case of false measurements, missed detection,

and existing target tracking. For all generated model and

data association hypotheses, the global hypothesis probabili-

ty in Eq. (22) was calculated and compared to produce only

the L-best global hypotheses by Step 6 and 7 in Section 4.4.
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Fig. 6(a) Representation of 572 unprocessed radar scans.

Fig. 6(b) Scattered UWB waveform for scan 493 (bottom),
a synchronized video image (left-top), and synchronized
two LADAR range measurements (right-top) for two walk-
ing humans.

Fig. 6 Measured data for the MHTC algorithm test

Table1 Factors in Global Hypothesis Probability

Fig. 7(a) Preprocessing for scan 493.



デンソーテクニカルレビュー　Vol. 17　2012

−68−

Fig. 8 shows the MHTC result on 572 scans (45 sec

recording time) for 3 humans walking randomly in and out

of the radar range. For each human target, the a posteriori

state estimates of the human target range are plotted as a

colored path. To evaluate the performance of the result,

LADAR range measurements are overlayed as a reference

where the LADAR1 range measurements (coaxial to radar,

near side to human from the radar) are shown as the blue

band of dots, and the LADAR2 range measurements (far

side of human from the radar) are shown as the gray band of

dots. Note that when humans change direction, the side of

human body faces both LADARs so that the LADARs see a

wider cross section with their edges further apart (arm-to-

arm depth rather than chest depth) resulting in larger spread

of the LADAR measurements bands at such instances (e.g.

at 30 sec, 34 sec, 38 sec, 41 sec, and 42 sec). Also, note that

the estimated range was mostly in the middle of the blue and

gray band in two radar measurements, except in the case

when sudden walking direction change introduces the

smoothing effect in the KF. Our experiments show that the

range accuracy of mono-static UWB radar is nearly as good

as LADAR. We can identify different modes over the obser-

vation time: (1) no targets until 9 sec; (2) new target track

initiation at 9 sec, target A; (3) single human target tracking

from 9 sec to 17 sec, target A; (4) target deletion at 17 sec,

target A; (5) no targets from 17 sec to 26 sec; (6) target

track initiation at 26 sec, target B; (7) single human target

tracking from 26 sec to 36 sec, target B; (8) target track ini-

tiation at 36 sec, target C; (9) double human target tracking

from 36 to the end; and (10) two target crossing at 39 sec

and 43 sec, target B and C. The MHTC results shows that

the range estimation paths agree the LADAR reference

measurements for all different mode and transitions.

Ultra-Wide-Band radar offers a complementary technology

for tracking humans, as it works well in conditions (such as

in the dark, or in dusty, foggy, rainy environments) where

the performance of other sensing modalities degrades.

However, the different nature of the UWB signal requires

new processing and tracking algorithms. Based on the novel

observation that mono-static UWB radar multipath scatters

from walking humans can be modeled as a point process, we

developed a rigorous method to track a fixed number of

human targets 14). In this paper we extended this method to

handle a variable number of targets, along with clutter and

temporary occlusions. This extension is necessary to make

our tracking approach applicable to realistic human tracking

and detection problems. The key to our extension was the

novel formulation of an MHTC procedure which allowed us

to rigorously organize and select the complex data associa-

tions inherent in UWB multi-path scattering from multiple

Fig. 7(b) The MAP EM clustering of the resolved 7 TOAs
for the resultant Gamma mixture component
distributions.

Fig. 7(c) The probability distribution of an expected
cluster– target association between the
cluster range measurement appearance
and the target’s predicted location with
Gaussian distributions and the uniform
distribution.

Fig. 7(d) Possible combinations of the cluster– target
associations.

Fig. 7 The processing steps of the MHTC algorithm.

Fig. 8　The MHTC results with changing numbers of
human targets.

6.　Discussion and Conclusion



targets. Ongoing work seeks to improve our method to iden-

tify clutter in the UWB return signal, and to extend the

approach to multi-antenna configurations as well as

LADAR-and-radar or vision-and-radar multi-modal human

tracking techniques.
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