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Many of state-of-the-art methods in visual recognition 

problems use deep Convolutional Neural Networks 

(CNNs), trained on augmented datasets (see 

representative works 1) 2) 6) 10) 11) 12)). It has been pointed 

out that CNN models with many layers tend to 

gain great discriminative power, while on the other 

hand, theoretical and methodological aspects of 

data augmentation are not fully revealed. Empirical 

studies have shown that data augmentation plays 

an essential role in boosting performance of generic 

object recognition. Krizhevsky et al. used a few 

types of image processing, such as random cropping, 

horizontal reflection, and color processing, to create 

image patches for the ImageNet training 6). More 

recently, Wu et al. vastly expanded the same dataset 

with many types of image processing including color 

casting, vignetting, rotation, aspect ratio change, 

and lens distortion on top of standard cropping and 

flipping 12). 

Handwritten character/digit recognition has been 

important for both industrial applications and 

algorithm benchmarking 1) 2) 7) 8) 10) 13). The problem 

is relatively simple in a sense that there is no degree 

of freedom in the background and that stroke can 

be easily deformed for data augmentation. Elastic 
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distortion is one such technique that has good 

properties in giving a large degrees of freedom in 

the stroke forms, while leaving the topological 

structure invariant. Indeed, data augmentation by 

elastic distortion is crucial in boosting classification 

performance 1) 2) 10). 

Data augmentation can be categorized into two: 

off-line and on-line. In this work, off-line data 

augmentation means to increase the number of data 

points by a fixed factor before the training starts. Every 

instance is repeatedly processed in the training until 

convergence 10). On-line data augmentation means to 

increase the number of data points by creating new 

virtual samples at each iteration in the training 1) 2). 

There, random deformation parameters are sampled 

at each iteration, hence the classifier always “sees” 

new samples during the training. Ciresan et al. claims 

that on-line scheme greatly improves classification 

performance because learning a very large number 

of samples likely avoids over-fitting 1) 2). Our work is 

mostly inspired by their work, and is focused on the 

on-line deformation.

1.1  Contribution

We derive appropriate class decision rule for neural 

networks trained with augmented data, and show the 

effectiveness through image classification experiments. 

Training with the on-line data augmentation 

minimizes an expectation value of loss function over 

random deformation parameters. We claim that 

class decision must be made in a specific way so as 

to minimize the same expected loss at test time. This 

requires to process a large number of virtual samples 

for a given test sample, as discussed in the following 

sections.

Though we believe that the proposed decision rule 

is beneficial to broad classification problems, image 

classification problems are discussed in this paper 

because we have not conducted experiments in other 

fields.

On-line data deformation learning can generate 

classifiers highly robust to intra-class variations. Such 

learning generally consumes many iterations to reach a 

minimum of the objective function. A vast number of 

training instances are processed because the number of 

instances increases linearly as the number of iterations 

increases. In the on-line deformation scheme, the 

original data themselves are not trained explicitly, they 

are only trained probabilistically.

In this section we provide a formal definition of 

augmented data learning, which has been treated 

rather heuristically so far. Let us first define the data 

deformation function as                 , where d is the 

dimension of the original data. The function              

takes a datum             and deformation-controllingpar

ameters                     , and returns a virtual sample. 

Each element of the set    is defined as a continuous 

random var iable  for  convenience .  Some are 

responsible for continuous deformation; e.g., θ1 

being a scaling factor. The other are responsible for 

discrete deformation; e.g.,              meaning side-

flipping, and               meaning no flipping, where 

θ2 〜   (0,1). It is assumed that probability density 

functions of deformation parameters are given at the 

beginning and held fixed during training and testing. 

We use the cross entropy as the loss function. The 

cross entropy requires vector normalization in the 

output units, where we use the softmax function.

Let i∈ {1,…,N} denote an index of original training 

data, ci ∈ {1,…, Nc } denote the class index of i-th 

sample, W denote the set of all parameters to be 

2.  Augmented data learning
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optimized, and                               denote a function 

realized by a neural network. Let fc be the c-th 

component of the output, then                =1 and fc > 0,

     ∈ {1,…, Nc }. Regularization terms are ignored 

here. Problem of augmented data learning is stated as 

follows.

Augmented Data Learning:

Given D={(xi,ci }, i =1,…, N , find W
★

 such that

where the objective function JD (W) is defined as

The expectation value is computed by marginalizing 

the cross entropy over deformation parameters that 

independently obey unconditional probability densities 

pk (θk ),k=1,…,K. By using appropriate random 

number generators, one can generate countlessly 

many virtual samples during training. By sufficiently 

reducing the objective function, the classifier gains a 

high level of intra-class invariance with respect to the 

set of deformations applied, without compromising 

inter-class distinctiveness.

A truly deformation-robust classifier would be 

obtained, if the integrals    [∙]=∫…∫∏kdθk pk (θk)(∙) 
were analytically calculated. However, it is hard to 

integrate out in reality. The integral can generally be 

converted into a sum of infinitely many terms,

Here,                         is a set of deformation 

parameters at          sampling, based on the probability 

densities pk (∙),k=1,…,K. With this summation 

form, the objective function can be approximately 

minimized by widely-used mini-batch Stochastic 

Gradient Descent (SGD). Note that a batch 

optimization algorithm is no longer applicable in a 

strict sense because the number of terms is infinite. At 

each iteration in the optimization process, data indices 

and deformation parameters are randomly sampled 

to generate a mini-batch. The mini-batch is discarded 

after a single use.

The total number of trained instances is determined 

when the training is terminated. Note that the original 

data samples are not explicitly fed into the network.

In this section we propose a new way of classification, 

APAC: Augmented PAttern Classification for 

augmented data learning described in the previous 

section. It is shown that a single feedforward of a 

given test sample is no longer a good choice when 

one minimizes the expected loss at the training stage. 

Pattern classification problem corresponding to the 

aforementioned augmented data learning is stated as 

follows.

APAC (Augmented PAttern Classification):

Given parameters W and data x, find c★ such that

It is worth pointing out that class decision making is 

also an optimization process requiring minimization 

of the expected loss. The expected loss for a given 

data sample must be computed at test stage, as it is 

minimized through training stage. Note that the test 

sample itself is not explicitly fed into the classifier in 

the proposed decision rule. In practice, finite-term 

relaxation must be made at test stage to estimate the 

expectation value in the objective function,

3.  Decision rule for augmented data 

learning
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This means, a large number of sets of deformation 

parameters must be randomly sampled using the 

same probability densities used in the training to 

generate virtual instances are created from test sample 

x. APAC requires to average the logarithms of the 

softmax outputs of the virtual instances, and then 

take the maximum argument to give prediction (see 

Fig. 1). We emphasize that 1) taking logarithm of the 

softmax output is important, otherwise an irrelevant 

quantity gets minimized at the test stage, and 2) 

sufficiently many virtual instances must be generated 

to have a good estimate of the expected loss. APAC is 

equivalent to picking the maximum argument of the 

product of the softmax output, which is analogous 

to selecting the largest joint probability among 

individual class probabilities of many virtual instances. 

For a sufficiently trained classifier, it is expected that 

generalization performance asymptotically reaches the 

highest as the number of terms, M, increases.

Experiments on image classification are carried out to 

evaluate generalization abilities of APAC. 

4.1  Setup

We used MNIST 7), CIFAR-10 5), and ILSVRC2012 9). 

We evaluated CNNs on all three datasets, and MLPs 

(multilayer perceptron, meaning fully-connected, 

layer-by-layer feedforward neural network) on 

MNIST and CIFAR-10. The MNIST-CNN has 2 

convolutional layers (2C, shortly), 2 pooling layers 

(2P) and 2 fully-connected layers (2F). The CIFAR-

10-CNN has (3C, 3P, 2F). The ILSVRC2012-CNN 

has (10C, 4P, 1F), designed on our own. Each of the 

MLPs has 3F. On-line data deformation is carried out 

in each training.

4.2  Classification performance

Table 1 summarizes test error rates (For ILSVRC2012 

top-5 validation error rates are evaluated) produced 

by APAC and non-APAC for classifiers trained on 

augmented data, as well as the results using no data 

augmentation at all during training and testing. 

The APAC results shown in Table 1 are those with 

M = 16,384 for all the MNIST and CIFAR-10 

experiments, and M = 4,096 for the ILSVRC2012 

experiment (see Eq. (5)). Two observations can be 

made. 1) Augmented data learning has positive effect 

in classification accuracies. 2) APAC consistently 

gives much better accuracies than non-APAC, 

prediction made by feedforwarding the original test 

samples{ albeit they use the same weights trained with 

augmented data.

4.2.1  Performance on MNIST

Our CNN model achieved 0.23% test error rate. To 

the best of our knowledge, this is the best when a 

single model is evaluated. All misclassified test samples 

are shown in Fig. 2. The top-2 prediction error rate 

is as low as 0.01%; i.e., there is only one misclassified 

sample out of 10K test samples.

Fig. 1　APAC, the proposed way of classification (above). 
Non-APAC, conventional way of classification 
(below).

4.  Experiments

Table 1　Summary of test error rates. Top-5 validation 
error rates are shown in the last row.
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Our single MLP model achieved 0.26% test error rate. 

To the best of our knowledge, this is the best record 

among MLP models reported previously. Our MLP 

model has, again, 0.01% top-2 prediction error rate 

on the test dataset. Interestingly, the very same test 

sample (shown at the top-left in Fig. 2) is misclassified 

by our CNN and MLP models.

4.2.2  Performance on CIFAR-10

Our single MLP model yields 14.07% test error rate. 

This is worse than the multi-column CNN (11.21%) 
2), but better than the CNN with stochastic pooling 

(15.13%) 14) and the CNN with dropout in final 

hidden units (15.6%) 4). We are aware that MLPs 

are easy to over-fit when used for image classification 

tasks. But still, this experiment gives an evidence that a 

fully-connected network trained with augmented data 

and tested with APAC can outperform CNNs trained 

with recently invented regularization techniques and 

without augmented data 4) 14).

4.2.3  Performance on ILSVRC2012

Our single CNN model yields 15.47% top-5 

validation error rate, which is better than the winning 

entry of the ILSVRC 2012 competition (16.42% 

from 5 CNN ensemble 6)), and worse than the 

winning entries of more recent competitions (11.74% 
15), 6.67% 11), 3.57% 3)). Though our result is not 

close to those of the state-of-the-art methods, it is still 

convincing that APAC improves accuracies through 

this large-scale image classification experiment.

4.3  Asymptotic behavior and computational 

issues

We evaluate how the classification error rates change 

as M goes to large values (Fig. 3). Non-APAC results 

are also shown in the figure with texts. The same 

weights are used for both APAC and non-APAC. The 

tendency that the classification accuracy raises as M 

increases is clearly observed in every experiment. This 

is due to the fact that the expected loss J(W) is better 

estimated as M gets larger when classifier is sufficiently 

trained with on-line data augmentation. Though it is 

computationally demanding to reach extremely large 

M, in practice M = 16 seems enough to gain high 

generalization and going beyond M = 16 gives only 

marginal effects.

Fig. 2　All MNIST test samples misclassified by our CNN 
model. In each figure, ground truth is printed at 
the top-left corner. The bar plot in each figure 
indicates softmax output of the 1st and 2nd 
predictions.

(a) the MINIST test error

(b) the CIFAR-10 test error



90

DENSO TECHNICAL REVIEW   Vol.21 2016

走
行
環
境
認
識

4.4  Analysis

All the experiments we conducted showed that APAC 

consistently gives better classification accuracies 

than non-APAC, when augmented data are learned. 

Let us illustrate how the class prediction gets 

altered between the two decision rules in the case 

of MNIST classification. Fig. 4 (a) shows a scatter 

plot of test data points of class-5 and class-9 in a 2D 

subspace of the linear output space, with x and y-axis 

corresponding to class-5 unit and class-9 unit. There, 

weights are obtained through the on-line deformation 

learning, and plotted data points do not involve image 

deformation. A test sample, whose image is superposed 

in the plot, would be misclassified to class-5 by non-

APAC. We deform this test sample in 1,000 different 

ways, and plot these virtual data points in Fig. 4 

(b). The observation is that the majority (661 out of 

1,000) of such virtual data points are in favor of the 

true class (‘9’). Indeed, APAC predicts the true class 

from the 1,000 virtual samples. An important point is 

that there is a better chance of predicting the correct 

class by taking the product of softmax output of many 

virtual samples created from a given test sample, rather 

than by using the softmax output of the test sample 

itself.

One might wonder what happens if summation, 

instead of product, of softmax output of many virtual 

samples is taken at test stage. We list the results below. 

Test error rates produced by taking the maximum 

argument of the softmax sum with M =16,384 

are: 0.24% for MNIST-CNN, 0.27% for MNIST-

(c) the ILSVRC2012_validation_top-5 error

Fig. 3　Asymptotic behavior of the classification error 
rates for large M .

(a)

(b)

Fig. 4　Illustration of APAC prediction of a class-marginal 
sample. The violet and light blue points are the 
class-9 and class-5 test data points, respectively, 
of MNIST. The red points are the virtual data 
points created from a particular test sample. See 
the text for more details.
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MLP, 10.42% for CIFAR-10-CNN, and 14.01% 

for CIFAR-10-MLP. Softmax product gives better 

performance in all cases except for the CIFAR-10-

MLP. We do not have a clear explanation why one out 

of four experiments exhibits opposite result, but it is 

safer and more meaningful to use softmax product so 

as to maximize the joint probability among individual 

class-probabilities of many virtual instances.

This paper addresses an issue of appropriate decision 

rule for neural networks trained with augmented data 

created in on-line fashion. Experiments on visual 

classification tasks revealed that the proposed way of 

classification, APAC, gives far better generalization 

than traditional decision rules.
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