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There has been a growing interest in Advanced 

Driver Assistance Systems (ADASs), which provide 

drivers with safe driving 9)14)20). Recent advances 

in the technology of car sensor devices (e.g., radar 

sensors, vision systems) and image recognition, the 

fundamental technology of ADASs, accelerate the 

research and development of ADASs. ADASs are one 

of the core technologies of Intelligent Transportation 

Systems, which have received increasing attention 

through competitions such as DARPA Grand and 

Urban Challenges.

In this paper, we develop an ADAS to automatically 

identify possible traffic accidents several seconds 

before they may actually occur. We refer to such kind 

of dangerous events, implicit events that will occur 

within several seconds as potential risks. For example, 

the traffic scene shown in Fig. 1 include the potential 

risk that there might be a child behind the left-hand-

side wall and the child might rush out to follow 

the soccer ball. We expect to drastically decrease car 

accidents by notifying such potential risks to car 

drivers as early as possible.

Most of the existing work on traffic risk recognition 

has been done in the context of motion prediction 

of vehicles 1)2)3)11). However, the existing prediction 

models do not fully take into account implicit 
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contextual information, which is not directly observed 

but can be inferred from observed information, 

such as the predicted future behavior of other traffic 

objects (e.g., backing up from a parking spot) and the 

existence of invisible objects (e.g., the invisible child 

behind the wall); see 9) for a detailed survey. Because 

traffic objects may suddenly change their future 

behavior in response to changes in the state of the 

surrounding context (e.g., the vehicle in front changes 

lanes, nearby traffic lights change), ignorance of such 

contextual information makes it unreliable to predict 

long-range risk, which is important for potential risk 

prediction. Additionally, explanations as to why the 

traffic scene is risky (e.g., who takes what action, why 

she/he takes that action).

In this paper, we propose a context-aware risk 

prediction model that exploits first-order logic-based 

abductive reasoning. Abduction is inference to the 

best explanation. In the field of artificial intelligence 

research, abduction is widely used for knowledge-

based systems, such as diagnostic systems and plan 

recognition systems 5)10). An abductive framework 

allows us to predict long-range movements of traffic 

objects by using implicit contextual information, 

and simultaneously provides deeper explanations as 

to why the traffic scene has a risk. The declarative 

nature of abduction allows us to abstract away from 

the procedural process of inferences, concentrating on 

describing relevant knowledge in a declarative fashion 

(see Sec. 2.1).

2.1  Related Work

Much research on risk prediction in traffic scenes has 

been done in the context of motion/path planning of 

vehicles 1)2)3)11). The main interest of the community 

is in how to correctly predict the trajectory of vehicles 

based on directly observed information such as 

position, speed and the state of traffic lights. For 

example, Broadhurst et al 1). predict the potential 

future trajectories of an ego-vehicle and other traffic 

objects based on kinematic models to detect a collision 

between traffic objects. Ortiz et al 11). estimate the 

sequence of future driver maneuvers of an ego-vehicle 

with a Multi-Layer Perceptron, where the features 

include the physical state of the vehicle (e.g., position, 

speed), driver behavior (e.g., head movement), and 

surrounding contextual information (e.g., the state of 

nearby traffic lights).

On the other hand, implicit information inferable 

from observed information such as the intention of 

traffic objects and the existence of invisible objects 

is also an important clue for risk prediction, but has 

rarely been explored. One notable exception can be 

seen in 7). Lattner et al 7). propose a theorem proving-

based approach. Similar to our work, Lattner et al 7). 

use a logical knowledge base to prove the risk in traffic 

scenes from observed information, inferring implicit 

information on qualitative knowledge representation 

such as the type of traffic objects and the discretized 

speed of pedestrians in a traffic scene.

However, since a theorem prover only checks if the 

risk is provable or not, the quality of proof is not 

taken into account, unlike in our model. Moreover, 

they report the evaluation of their model on one 

classic example of a traffic scene. In contrast, our 

model evaluates the goodness of risk proofs in terms 

of evidentiality seen in a traffic scene and is tested on 

a much wider variety of risk prediction problems; see 

Fig. 1　Example potential risks in traffic scenes.

2.  Background
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Sec. 3 and Sec. 4 for further details.

2.2  Grounding technology

Grounding technologies, including image/motion 

recognizers and radars, are recently making significant 

advances. For object recognizers, a number of 

benchmark datasets are publicly available 17)18)19), and 

they have been extensively studied over the years. 

Benenson et al 17). compare around 40 pedestrian 

detectors on the Caltech pedestrian detection 

benchmark, and report that the best method, 

Katamari-v1, achieves a 22.5% miss rate. In fact, 

these technologies have already been applied to traffic 

scene understanding 16). Regarding other grounding 

technologies, such as radar and vision cameras, 

extensive research has also been done; see 20) for a good 

overview. 

Obviously, in real-life applications, the whole system 

needs to be grounded to the real world by means of 

high-resolution cameras, accurate image recognizers, 

physics simulators, etc. In addition, we clearly need 

additional effort to calibrate our risk prediction system 

with possible noisy inputs. However, exploring the 

use of implicit information in risk prediction is a 

big research issue in itself. Therefore, we leave the 

integration of these technologies into our system for 

future work.

2.3  Abduction

Abduction is inference to the best explanation. 

Abduction is widely used in knowledge-based systems, 

such as diagnostic systems and plan recognition 

systems 5)10). Formally, first-order logical abduction is 

defined as follows: 

Given: Background knowledge B, and observations O, 

where B is a set of first-order logical formulae, and O 

is a set of literals or substitutions. 

Find: An explanation H such that H ∪ B ⊨ O,H ∪

B ⊭ ⊥ , where H is a set of literals or substitutions. 

Each element in H is called an elemental explanation. 

Throughout the paper, ⊨ , ⊥ means logical entailment 

and logical contradiction, respectively.

In this paper, we assume that all variables occurring 

in a logical form of background knowledge are 

universally quantified with the widest possible scope, 

unless it is explicitly stated as existentially quantified. 

On the other hand, we assume that variables occurring 

in an explanation and observation are existentially 

quantified implicitly.

Typically, given observations O, we have more than 

one explanation H that explains O. We call each of 

them a candidate explanation, and denote a set of 

candidate explanations of O given B as C(O, B). 

The goal of abduction is to find the best explanation 

among candidate explanations by a specific evaluation 

measure. In this paper, we formulate abduction as 

the task of finding the maximum-score explanation 

H* among C(O, B). Formally, we find H* = arg max 

H ∈ C(O,B) score(H), where score is a function that 

maps each H in C(O, B) to a real number, which is 

called the abductive score function. In the literature, 

several kinds of score functions have been proposed, 

including cost-based and probability-based 2)5)13). We 

elaborate our score function in Sec. 3.5.

3.1  Task definition

We define the problem of traffic risk prediction with 

respect to a driver d at time t as follows:

Given: An image description sd,t of a traffic scene 

from a driver d’s viewpoint at time t, where sd,t is a set 

of literals in first-order predicate logic,

Find: A set R of potential risks, where each potential 

risk ri consists of an object-action tuple (oi, ai).

We elaborate on the representation language of an 

image description in Sec. 3.3. Roughly, the image 

3.  Recognizing Potential Risks with Logic-

based Deep Scene Understanding
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description includes a set of qualitatively-represented 

first-order logical atoms that describe both physical 

information and symbolic information (e.g. , 

{wall(Wall), ball(Ball), car(RedCar), left-front-of(Now, 

Wall, Me), ...}). In this paper, we simply assume that 

the logical forms are correctly obtained from sensors 

such as LIDAR or vision cameras. (See Sec. 2.2 for the 

validity of this assumption.)

3.2  Risk prediction as abduction

One simple approach to solving this task is to directly 

model a mapping between the combinations of 

observed ground-level clues and potential risks. For 

example, one could create a straightforward rule like: 

“if (i) there is a child x, (ii) x is in left front of the 

ego-vehicle and (iii) x has an umbrella, then x might 

rush out.” This kind of rule could be implemented 

in a production system or a knowledge-based system 

(a.k.a. expert systems), or could be learned by feature-

based machine learning algorithms. However, such 

approaches to directly mapping observable clues to 

risks may not be robust enough to deal with a large 

variety of unseen cases in real-life applications. 

The main idea of our approach is as follows. We 

keep the prediction rules as general as possible, and 

try to find the best explanation for the condition of 

general prediction rules based on multiple pieces of 

evidence at different levels of abstraction. One can 

view the process of finding the best explanations as 

the projection of observed information onto a latent 

space of features useful for risk prediction. Introducing 

a latent feature space has been proved effective for a 

wide range of AI tasks 4)8). 

In our task, the latent information we particularly 

consider useful includes the beliefs, desires, and 

intentions (BDI) of each traffic object appearing in a 

given traffic scene. If the BDI information of objects 

is available, it can then be used to predict their next 

actions, which leads to a better prediction of potential 

risks. BDI information is not observable, but may 

sometimes be inferable from the observable behavior 

of the object and the observable information on the 

traffic environment.

Our overall framework is shown in Fig. 2. To 

formulate the above idea, we regard the task of 

potential risk prediction as the task of abductive 

theorem proving. This is analogous to the spirit 

of abductive text understanding 5)12); however, our 

work is the first work to apply abduction to the 

task of potential risk prediction. That is, given an 

image description s, we try to prove a proposition 

“there exist some risks” from s, using a background 

knowledge base. More specifically, we perform 

abductive reasoning, regarding an input image 

description and the “risk”' proposition as observation 

O. For background knowledge B, we use three kinds 

Fig. 2　Overall framework. Arrows with alphabets represent information flow.
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of knowledge bases: (a) causality (e.g., “a pedestrian 

must stop when the traffic signal is red,” “a pedestrian 

who does not recognize the ego-vehicle rushes out”), 

(b) ontological knowledge (e.g., “trucks and buses 

are both large vehicles”), and (c) risk patterns (e.g., “a 

person can rush out”).

Let us illustrate the reasoning process with one 

possible explanation shown in Fig. 2. The explanation 

is generated with the following reasoning processes: (A) 

given the input scene, we hypothesize that there is a 

person X who does not recognize me and who would 

rush out, using (c) the knowledge about potential 

risks; (B) hypothesize X to be the child who follows 

a ball Y, using (a) the knowledge about causality; (C) 

hypothesize the ball Y to be identical to the ball in the 

observed ground-level information; (D) hypothesize 

there is a person Z behind the wall who does not 

recognize me; (E) hypothesize Z to be a child; (F) 

hypothesize Z and X to be identical. Based on this 

explanation, we identify “a child who follows the 

observed soccer ball behind the wall and who will rush 

out.” as a risky object-action tuple.

The  ma in  advantage  o f  u s ing  abduct ion  i s 

characterized as its declarative nature. We can abstract 

away from the process of inferences, concentrating 

on creating a sophisticated knowledge base in the 

declarative fashion. For example, we do not specify the 

order of reasoning processes (A) through (F) in Fig. 2 

beforehand; an abductive inference engine finds the 

best way to apply the inference rules in a knowledge 

base. In contrast, procedural modeling additionally 

requires us to specify when, where, and how to use 

the knowledge base. This may not be a promising 

approach in cases where we want to combine several 

kinds of inferences. For those who are not familiar 

with the notion of declarative and procedural 

modeling, see Sec. 2.1 for further descriptions. 

We have another important advantage in using 

abduction for potential risk prediction, which is 

that the latent information inferred by abduction 

is interpretable by a human. As described in Sec. 1, 

it is important for potential risk prediction systems 

to provide car drivers with deeper explanations as 

to why the system derives a potential risk. To fulfill 

this requirement, we can exploit the inferred latent 

information as the explanation for a potential risk. 

For example, in the above example, we can provide 

“children are playing with the soccer ball behind 

the wall” as the explanation for the potential risk 

“an invisible child will rush out.” In contrast, other 

machine-learning techniques using latent information 

such as deep neural networks do not produce 

interpretable latent information.

3.3  Knowledge representation

The first-order language we use for representing our 

background knowledge is the following. One may 

think of some other alternative ways of knowledge 

representation. We leave the further exploration of the 

issue of knowledge representation to future work.

Constants. Throughout all traffic scenes, the following 

constants are used: Me: the ego-vehicle, MyLane: the 

current own lane, OppositeLane: the opposite lane, 

MyWalkingLane: the walking lane on the ego-vehicle 

side, OppositeWalkingLane: the walking lane on the 

opposite side of the ego-vehicle. Now: the current 

time, Future: sometime in the future. Also, all the 

objects in a traffic scene are represented by constants 

(e.g., RedCar, MotorCycle).

Predicates. To describe properties of objects (e.g., 

type) and the relation between objects (e.g., relative 

position) in a traffic scene, our language includes the 

following predicates:

　・Type of object: one-place predicate representing 

a concept type of object. We enumerate about 50 

typical types of traffic objects from material for driving 

lessons. For example, signal(x) means that x is a signal.

　・State of object: one-place predicate. We define 
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the following predicates: wet(x), icy(x), muddy(x), 

snowy(x).

　・Time-sensitive state of object: two-place predicate 

representing the state of an object at a certain time. 

We define about 20 types of predicates to represent 

states. For example, left-head-lamp-on(t,x) means that 

a head lamp of x is turned on at time t. The time is 

represented by either Now or Future as defined above.

　・Intention of object:  one-place predicate 

representing the intention of an intentional object. 

The predicates include will-rush-out(x), will-avoid(x), 

will-go-front(x), etc. The main task of potential risk 

prediction is to infer the intentions of objects. 

　・Relative position between objects: more than 

one-place predicate representing the relative position 

between objects at a certain time. We define about 15 

predicates. For example, in-front-of(t, x, y) means that 

x is in front of y at time t.

　・Potential risk: risk(r,p) representing that there 

exists risk r for traffic object p.

3.4  Background knowledge

Using the knowledge representation above, we encode 

our commonsense knowledge as logical axioms. Our 

background knowledge consists of three kinds of 

knowledge.

Causality. To infer intentions of objects, we encode a 

relation between states and intentions in background 

knowledge. For instance, we write for all x,y: large-

vehicle(x) & in-front-of(Now, x, y) → will-avoid(y) 

to represent the knowledge that if large vehicle x (e.g., 

truck) is in front of vehicle x, y is likely to avoid x. 

Note that the knowledge is not intended to express a 

100% rigid logical implication.

Ontological knowledge. We encode a conceptual 

hierarchy and disjointedness between concepts in 

background knowledge. For instance, we write for all 

x: bicycle(x) → vehicle(x) to represent the fact that a 

bicycle is one kind of vehicle. We write for all x: car(x) 

& bicycle(x) → ⊥ to represent the fact that something 

cannot be a car and a bicycle simultaneously.

Risk pattern. Based on observed information and 

implicit information inferred by the knowledge 

above, we define a mapping between a traffic scene 

and potential risks. For example, we write for all x, y: 

in-front-of(Now, x, y) & will-stop(y) → risk(r, y) to 

represent that if something x would stop in front of 

vehicle y, that will be a potential risk to y.

In our experiment, we manually construct a knowledge 

base, which consists of 32 causal relations, 2,077 

entries for ontological knowledge (51 conceptual 

hierarchy, 2,026 conceptual disjointedness) and 11 

risk patterns. The knowledge construction process is 

all done on the training data mentioned in Sec. 4.2.

3.5  Score function

As described in Sec. 2.3, we model the abductive 

score function as the weighted linear feature function 

w·f(H), where w is a real-valued weight vector and f 

is a feature function of a hypothesis. In this paper, we 

design the feature function based on the following 

intuition: a hypothesis is (un)reliable if the axioms 

used to derive it are (un)reliable. More specifically, 

we define the feature function as follows: f(H) = 

fe(h1) + fe(h2) + ... + fe(hn), where hi is an element 

of assumptions(H), and assumptions(H) is a set of 

elemental hypotheses that are not explained by H, B, 

and O. That is, we characterize the hypothesis H with 

a set of unexplained literals. Moreover, we decompose 

the feature function of unexplained elemental 

hypothesis fe(h) as follows: fe(h) = fa(a1) + fa(a2) + 

... + fa(an), where ai is an element of axioms(h), and 

axioms(h) is a set of axioms used for hypothesizing h.

For fa(a), we simply introduce binary functions for 

each axiom, namely fa(a) = {1 if a is “for all x, y: in-

front-of(Now, x, y) & will-stop(y) → risk(r, y)”; 0 

otherwise, 1 if a is “all x: bicycle(x) → vehicle(x)”; 0 

otherwise, ...}. One can design another type of feature 
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function; for example, fa(a) = {1 if a is an axiom 

about risk pattern; 0 otherwise, 1 if a is an axiom 

about causality; 0 otherwise, ...}, which shares the 

weights across axioms. Because the performance of 

risk prediction is sensitive to the design choice of the 

feature function, we will explore the proper design of 

the feature function in our future work.

In order to tune the weight vector w, we adopt the 

machine-learning framework for abduction from 21), 

replacing the weight update algorithm with Soft Exact 

Confidence- Weighted Learning 22), the state-of-the-

art online machine-learning algorithm. Intuitively, the 

weight learner finds the weight vector that minimizes 

the risk prediction error on a training dataset. In 

our feature design, it learns the importance of the 

reliability of axioms for representing the reliability 

of an unexplained hypothesis. Through the learning 

process, the axioms useful for discriminating risky 

events from non-risky events are given higher weights, 

while the axioms not contributing to the risky/non-

risky discrimination are given lower weights. This 

enables the prediction model to be more robust for 

redundancy or inconsistency between inference rules 

in the knowledge base.

In our experiments, we compared our abduction-

based model against a simple machine learning-based 

baseline model that relies only on directly observed 

ground-level information, using the dataset described 

in Sec. 4.1. The goal is to estimate how useful the 

inference of implicit information is for potential risk 

prediction.

4.1  Dataset

An important issue for ADASs is how to deal robustly 

with a wide variety of traffic scenes. However, to the 

best of our knowledge, there is no existing standard 

benchmark dataset that includes a wide variety of 

traffic scenes. Prior researchers on risk prediction 

evaluate their models only on a severely limited variety 

of scenes.

To create such a benchmark dataset, we collected 

potential risk prediction problems from the textbook 

published by Chubu-Nippon-Driver-School 24) and 

Web materials for driving lessons (http://www.honda.

co.jp/safetyinfo/kyt/training;http://www.jaf.or.jp/eco-

safety/safety/danger;http://www.bridgestone.co.jp/csr/

tiresafety/training;http://www.nasva.go.jp/fusegu/) 

The materials cover a wide range of risky situations, 

from pedestrians rushing out at a crossing to slipping 

on icy roads. Each problem consists of an illustrated 

traffic scene from the driver’s viewpoint and one or 

a few typical risks in the traffic scene annotated by a 

human.

For each problem, we manually convert the traffic 

scene into a logical form and specify the object-

action tuples that are described as a potential risk in 

the problem description. As a result, we extract 93 

problems from Chubu-Nippon-Driver- School 24)

as training data, and 100 unseen problems randomly 

sampled from the web materials as test data. The 

dataset contains 14 traffic objects, 1.6 risky object-

action tuples per scene on average, and 4 types of 

risky actions in total: rushing out, sudden slowdown, 

taking control of someone, and passing by. To the best 

of our knowledge, no previous work has evaluated 

the proposed systems on such a wide variety of risk 

prediction problems. We plan to make our dataset 

publicly available so that it can be used as a shared 

benchmark in the research community to compare 

across different ADASs.

4.2  Setting

As an evaluation measure, we use Precision@k and 

Recall@k which are defined as follows: Precision@

k = NCPs(k)/NOs(k); Recall@k = NCPs(k)/NOLs, 

4.  Evaluation
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where NCPs(k) is the number of correct predictions 

in k-best outputs, NOs(k) is the number of output 

object-action tuples in k-best outputs, and NOLs is 

the number of labels in the test set. We do not require 

each system to infer the types of invisible objects (e.g., 

it suffices to infer that something 

behind the wall might rush out in Fig. 1. We also 

use F-measure@k, which is the harmonic mean of 

Precision@k and Recall@k.

To obtain k-best explanations, we follow 15). We 

perform abductive reasoning k times, imposing a 

constraint that the best explanation found in the 

n-th turn should not include the potential risks 

found in 1, 2, ..., (n-1)-th turns. For example, if the 

best explanation contains the potential risk (Car1, 

will-rush-out), we find the second-best explanation 

under the constraint that (Car1, will-rush-out) is not 

included in the best explanation.

For learning and inference, we have extended Phillip 

(https://github.com/kazeto/phillip), an efficient open-

source abductive inference engine that runs on first-

order logic 23). By default, we initialized the weights of 

axioms with -1 to penalize backward inference. This 

enables the abductive score function to prefer minimal 

explanations that can infer annotated potential risks. 

We also tried the zero-initialization of weights, but it 

gave worse results.

To evaluate our model, we performed 10-fold cross 

validation on the test data, where we also used the 

emphasize that the training data used for knowledge 

construction is not included in the test partition of the 

10-fold cross validation.

4.3  Baseline model

In order to understand the difficulty of potential 

risk prediction, we created (i) a baseline model that 

randomly chooses a risky object from a scene and 

then randomly outputs a risky action from the 4 types 

of risky action candidates, and (ii) one that simply 

predicts that all the people and cars in a scene will 

rush out, which is the major source of potential risks 

in the training data.

Secondly, we built a baseline model that directly 

models a mapping between observed information 

and potential risks. Given an image description, the 

baseline model enumerates all the possible candidate 

potential risks (object-action tuples) and ranks them 

to output k-best risks. We use Ranking SVM 6) to 

train the ranking model, where all the features are 

binary features encoding (i) literals describing a ranked 

object and action (prefixed with “obj” and “action_'”) 

and (ii) literals describing the other traffic objects in 

a traffic scene (prefixed with “context_)”). Since the 

combinations of features are considered important for 

risk prediction, we used a polynomial kernel of degree 

2.

4.4  Results

The results of our experiment are shown in Table 

1.  The random baseline models indicate poor 

performance because we have 14 traffic objects per 

scene on average and 4 risky action candidates (i.e., the 

Table 1　Results of potential risk Prediction 
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included in candidate explanations. To understand 

why these 29 correct risks are ranked lower, we further 

manually checked whether top-ranked wrong risks 

are inferred via reasonable inference rules. We found 

that the majority of the erroneous potential risks are 

derived via unreasonable inference rules, which is 

caused by a lack of physical information such as the 

precise positions and directions of traffic objects.

For example, the system needed to understand that a 

man is facing a bus stop in order to board a bus and 

therefore the man is more likely to rush out than other 

people in the same traffic scene. Similarly, the system 

needed to understand that the woman is leaving 

the bus stop, and she is not facing the road. This 

inference requires the system to perform reasoning 

about physical information such as the direction of 

the pedestrian, the position of the bus stop, etc. The 

current qualitative representation loses such precise 

information. In future work, we plan to integrate a 

physics simulator with the current risk prediction 

system to cope with such quantitative information 

properly.

While previous work on traffic risk recognition has 

mostly relied on directly observed information, we 

have explored a context-aware logical abduction-

based risk prediction model that exploits implicit 

information inferable from observed information. Our 

experiments have shown that the abduction-based 

model is still not mature compared with a simple 

machine learning-based model, but indicates that 

the abduction-based framework has a good potential 

for solving risk prediction problems. The benchmark 

dataset and axiomatized knowledge base are to be 

made publicly available for research purposes.

Clearly, as revealed by the error analysis, our 

abduction-based model needs non-discretized 

probability of the output being correct is 1/56=1.8%). 

The simple majority baseline achieved F measures of 

32.7, although the prediction rule is very simple.

Both SVM and abduction models performed better 

than the simple baseline models in k=3 and k=2, 

respectively. Contrary to what we expected, the 

abduction-based model did not outperform the SVM 

baseline model that relies on only directly observed 

information.

To understand the potentiality of our abduction-

based model more deeply, we analyzed the improved 

examples. An example is shown in Fig. 3. The correct 

answer for this problem is that the left-hand-side 

woman might rush out because her dog suddenly 

starts to run. While the baseline model ranked the 

correct risk in 2nd place, our abduction-based model 

ranks it in 1st place. The best explanation for this 

problem, an output from the visualization module 

provided by Phillip, is 

shown in the bottom of Fig. 3. Although our 

abduction-based model could not obtain a significant 

gain in the overall performance, we believe that 

abduction-based modeling has great potential for 

potential risk-oriented ADASs because interpretable 

explanations are produced.

4.5  Error analysis

We analyzed 30 randomly-sampled error instances and 

found that in 29 instances the correct risks are at least 

Fig. 3　Example inference results.

5.  Conclusions
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quantitative information representing physical 

information of traffic scenes, such as the positions and 

shapes of traffic objects. Our future directions include 

exploring the integration of symbolic inference into 

physics-based simulation, using first-order logic 

as the interface. At the same time, we also explore 

the integration of our prediction system with the 

grounding technologies such as sensor devices and 

vision cameras through a road test in a more practical 

situation. To extend our problem setting, we will 

also continue to develop our benchmark dataset so 

as to evaluate the discriminative ability of risky vs. 

non-risky situations of risk prediction systems. For 

a more practical evaluation, we also plan to use the 

video traffic scenes recorded via drive recorders as the 

benchmark dataset.
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