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Recently, advanced driver assistance systems (ADAS) 

have been actively developed to improve safety and 

convenience. ADAS is the technology controlling 

vehicle behavior with the surrounding environment 

information such as adaptive cruise control (ACC) or 

lane change assist (LCA). By using these technologies, 

fuel economy can also be improved drastically 1)-4).

Fig. 1 shows our perspective of energy management 

technology ranging from level 1 to 4. Level 1 is 

“in-car energy management”. Level 2 is “predictive 

energy management” such as predictive ACC. 

Level 3 is “energy management for passenger and 

freight transport”, where transportation companies 

reduce their CO2 emissions. Finally, level 4 is 

“energy management in a smart city”. In this paper, 

as a solution at level 2, predictive ACC to reduce 

CO2 emissions drastically, namely ECO ACC, is 

introduced.

This paper is organized as follows: section 2 presents 

the overview of ECO ACC and its technical issues. 

The prediction technology used for ECO ACC is 

described in section 3. In section 4, the control scheme 

and the design of ECO ACC are described. Afterward, 

the validation results based on a simulation and a test 

vehicle provided in section 5 shows the performance of 

the proposed control strategy in the real world. Lastly, 

the conclusion and future work are given in section 6.

To improve fuel economy, the following three 

methods are effective: shifting the driving point to 

improve efficiency, decreasing the maximum vehicle 

speed to reduce road load, and utilizing kinetic energy 

as much as possible to minimize energy loss. In city 

driving, fuel economy can be improved mainly when 

decelerating before an intersection. In this situation, 

these three methods are realized with additional engine 

stop driving, lower vehicle speed, and extending 

driving distance with kinetic energy. This driving 

pattern known as coasting can improve fuel economy 

drastically. Therefore, we use coasting as a main 

efficient driving way for our ECO ACC.

When the ego vehicle follows the preceding vehicle, 

we can define an ideal driving condition of the ego 

vehicle represented with time headway (THW). 

It is determined by the safety requirement and the 

following performance. With ECO ACC, the ego 

vehicle uses coasting in or around this condition 

as much as possible. However, when the preceding 

vehicle decelerates or an adjacent vehicle cuts in, 

the ego vehicle needs to decelerate as well to avoid 

collision depending on the situation. If unnecessary 

preceding vehicle following is avoided, energy loss can 

be reduced by lower vehicle speed. Fig. 2 shows a result 

example in which fuel economy deteriorates by 80% 

mainly due to the energy loss of unnecessary driving to 

follow the preceding vehicle. While the vehicle drives 

with coasting in the ideal case, the preceding vehicle 

behavior is copied by the ego vehicle in the actual 

case. (Driving condition: following the preceding 

vehicle before an intersection, test vehicle: C-segment 

hybrid electric vehicle (HEV), engine displacement: 

2L.) In this paper, we aim to improve fuel economy 

by reducing the energy loss due to unnecessary 

preceding vehicle following under the condition that 

an acceptable driving feeling is maintained.

To realize this goal, we introduce a prediction 

technology of the surrounding vehicle behavior to 

decide the optimal coasting timing. In this paper, we 

focus on the deceleration of the preceding vehicle, 

Kinetic Energy Management 
with Surrounding Vehicles 
Behavior Prediction ＊

Yutaro ITOH Hiroyuki NANJO Mitsuharu HIGASHITANI

This paper explains a novel adaptive cruise control (ACC) driving with coasting to improve fuel 
economy. The purpose is to reduce the energy loss with predictive control when the preceding vehicle 
decelerates, while an acceptable driving feeling is guaranteed. To achieve this goal, the prediction of the 
preceding vehicle behavior is introduced to determine the ego vehicle behavior realized by using inverse 
reinforcement learning (IRL). Besides, the cost function is designed to determine the optimal coasting 
timing by balancing longer coasting time and an acceptable driving feeling, while the ego vehicle speed is 
controlled with a rule-based control at a non-coasting period. The performance of this control strategy 
has been validated with simulation, showing a 9.7% fuel economy improvement on average for hybrid 
electric vehicles in the case of following the preceding vehicle before an intersection. It has also been 
validated with an actual test vehicle, where a high-level balance between high efficiency and an acceptable 
feeling is realized.

                 Key words  :
energy management, ADAS, predictive control, probabilistic prediction

1.  Introduction

＊ ( 公社）自動車技術会の了解を得て，2019 年秋季大会学術講演会 講演予稿集 No.105‒19 p.1 ～ 文献番号 : 20196069 より修正・加筆し転載

Daisuke HIRANO Kazuhito TAKENAKA

Fig. 1　Our perspective of energy management technology

2.   Overview of “ECO ACC”  and 
Issues
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although the method that we use can also be applied 

for other vehicle behavior such as the cut-in of an 

adjacent vehicle. Here, since it is almost impossible 

to predict the preceding vehicle behavior with 100% 

accuracy, the predicted result includes uncertainty 

represented with probability. By using the prediction 

information, the coasting timing is derived by 

solving an optimization problem to manage both fuel 

economy improvement and driving feeling guarantee.

3.1   Overview of Inverse Reinforcement 
Learning

In this paper, inverse reinforcement learning (IRL)5) 

is used to predict vehicle behavior. IRL is one of 

the imitation learning methods of  behavior f rom 

demonstrations. By using the f ramework, future 

vehicle behavior can be predicted as mentioned in6). 

In this method, a reward function is learned from 

demonstrations in Markov Decision Process (MDP) 

framework. An agent performs actions to maximize 

the cumulative reward defined with the reward 

function. The future behavior can be predicted as a 

likely action sequence from the current state based on 

the reward function. Besides, a similarity (likelihood) 

between a demonstration and histories of behavior 

(recorded sequences) can also be measured by using 

the reward function.

3.2  Vehicle Behavior Modeling with IRL
In our case, we first classify vehicle behavior 

demonstrations represented with the vehicle position, 

speed, and acceleration before an intersection into two 

categories: stopping and passing behavior. Secondly, 

we individually estimate reward functions from 

demonstrations in each of the two categories where 

the vehicle position and speed are modeled as states, 

and acceleration is modeled as an action in MDP 

framework. To predict the future behavior of the 

preceding vehicle based on the current observation, 

we calculate the likelihood and the optimal action 

sequence for each of the categories. The likelihood 

represents the extent to which the observed behavior 

belongs to each category, and the optimal action 

(acceleration) sequence represents an expected 

future behavior if the observed behavior belongs to 

each category. Both the likelihoods and the optimal 

action sequences are used for the predictive control 

mentioned in section 4.

3.3   Applying IRL Result for Prediction 
Usage

By us ing  the  l ike l ihoods ,  we  can  ca l cu l a t e 

probabilistically which category of behavior the 

preceding vehicle belongs to. For the classification, we 

focus on the difference between two log likelihoods 

(log likelihood gap) for stopping and passing behavior. 

Here, the log likelihood gap g(ψ) is defined as the 

following equation:

（1）

where lstop (ψ) and lpass (ψ) are the log likelihood 

for stopping and passing behavior, respectively, at 

the preceding vehicle position ψ. It is assumed that 

distributions of the log likelihood gap for each category 

change with the position ψ and that the distributions 

at each position are Gaussian distribution. Once the 

distributions of the log likelihood gap are calculated, 

the probability value represented with the following 

equation can be obtained for each category at any 

time:

(2)

Here, μc (ψ) and σc ((ψ)) are the mean and the variance 

at the position ψ, respectively, when the preceding 

vehicle behavior belongs to the behavior category c 

(passing or stopping). Fig. 3 shows an example of log 

likelihood gap distributions for each category and the 

stopping behavior appearance probability at each log 

likelihood gap.

4.1  Optimization Problem Formulation
As mentioned in section 2, the energy loss caused 

by the unnecessary following needs to be reduced 

to improve fuel economy. On the other hand, the 

deviation from the ideal driving condition also 

needs to be reduced to guarantee the following 

performance. Therefore, the optimization problem 

should be formulated to fulfill both requirements. 

Let us consider n types of preceding vehicle behavior 

with their appearance probability. We can calculate 

the driving energy of the i-th predicted behavior as 

follows:

(3)

where ve is the ego vehicle speed time sequence, t is 

the time, T is the time length of behavior, and πi is the 

driving power time sequence of the ego vehicle. On 

the other hand, the deviation from the ideal driving 

condition is defined as follows:

(4)

Here, yi is the distance from the edge of the ideal 

driving condition to follow the preceding vehicle 

expressed as follows:

(5)

where dmin is the minimum driving distance from the 

preceding vehicle, dmax is the maximum one, d is the 

current one, and vp is the preceding vehicle speed 

time sequence. If εi is minimized, fuel economy is 

maximized. On the other hand, small δi means that 

the ego vehicle drives in or around the ideal driving 

condition. Since the preceding vehicle behavior is 

represented with a probability, both the driving energy 

and the deviation from the ideal driving condition can 

be expressed as the following expected values:

(6)

(7)

where pi is the appearance probability of the i-th 

predicted behavior. By using these two variables, we 

design the optimization problem as follows:

(8)

where k is a weighting factor whose range of value is 

0≤ k ≤1. Our goal is to determine the vehicle speed to 

minimize this cost function.

Fig. 2　 Fuel economy comparison between ideal case 
with coasting and actual case

Fig. 3　 Stopping behavior appearance probability 
based on likelihood

3.   Prediction Technology 
Introduction

4.   Vehicle Speed Optimization
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4.2  Optimal Condition Derivation
If we can omit unnecessary following behavior of the 

preceding vehicle, driving patterns of ECO ACC can 

be represented only with the following phase without 

braking behavior and the coasting phase. Therefore, 

assuming that the vehicle can drive with these two 

phases by optimization, we decide when to start 

coasting to minimize the cost function. Fig. 4 shows a 

toy example illustrating three different coasting patterns. 

If the vehicle starts coasting at an earlier stage, then the 

THW is increased, which is not preferable in the sense 

of the following function (#1 shown in Fig. 4). On 

the other hand, if the vehicle starts coasting at a later 

stage, then the driving energy is increased to guarantee 

an appropriate THW, which leads to fuel economy 

deterioration (#3 shown in Fig. 4). For this problem, 

the optimization problem Eq. (8) is replaced with the 

following equation to find the optimal coasting timing 

(#2 shown in Fig. 4):

(9)

because the ego vehicle speed ve is determined by 

the coasting start timing τ. Since the simplified cost 

function in Eq. (9) is one dimensional, it is easy 

to identify the optimal condition even by using an 

exhaustive search. If the vehicle starts coasting when 

the function value at τ = 0 is minimum, we can 

achieve the goal.

4.3  Control Scheme
Fig. 5 shows the control framework implemented in 

the actual test vehicle. The rule-based logic illustrated 

at the bottom always calculates the target acceleration, 

which is converted into the target traction force. On 

the other hand, the coasting command is determined 

based on the predictive control. When the arbitration 

block receives the coasting flag, the target traction 

force is rewritten to zero (i.e. coasting).

With our control strategy, the vehicle speed except 

in the coasting phase is determined based on the 

current time headway (THW) and the relative speed. 

Therefore, after the ego vehicle finishes coasting, 

where the THW tends to be relatively large, it could 

accelerate to decrease the THW. Since this behavior 

causes an increase of the ego vehicle speed, the energy 

loss to follow the preceding vehicle is also increased, 

which causes fuel economy deterioration. To solve 

this problem, an additional function is introduced 

to suppress unnecessary acceleration based on the 

prediction information as shown in Fig. 6. Right after 

the ego vehicle finishes coasting, the target vehicle 

speed is determined to be a lower value than usual. Let 

us define the vehicle speed when the vehicle finishes 

coasting as vcst and the target vehicle speed generated 

by the rule-based control as vacc(t), respectively. The 

higher the stopping behavior appearance probability 

is, the closer to vacc(t) the final target vehicle speed vtag 

(t) should be. Therefore, vtag(t) is determined with the 

following equation:

(10)

Here, α is a function of the stopping behavior 

appearance probability shown in Fig. 7. Since the 

vehicle accelerates to catch up with the preceding 

vehicle after passing through an intersection, the total 

trip time is not increased so much.

Fuel economy improvement with the developed 

control strategy mentioned in this paper is validated 

with simulation. While the target vehicle speed is 

determined by the rule-based ACC control strategy, 

an additional coasting command is generated based 

on the control strategy mentioned in section 4 with 

the prediction information of the preceding vehicle 

behavior. Simulation condition is as follows:

• Simulation vehicle: C-segment HEV

• Engine displacement: 2 L

•  Driving condition: following the preceding vehicle 

before an intersection

•  Other condition: ambient temperature = 25℃ , hot 

start

For training and validation, we utilize driving history 

data in which vehicles drive before an intersection 

without a traffic signal in Higashiura, Aichi, Japan 

as shown in Fig. 8. Vehicles driving at this root have 

two choices: passing through without deceleration 

and turning right with deceleration. Since there is 

no traffic signal, the ego vehicle has to predict the 

preceding vehicle behavior only from the sensing 

information. The data used for validation are shown 

in Fig. 9. The distance from the initial point to the 

terminal point (the intersection) illustrated with an 

arrow in Fig. 8 is 600 m. All the data are divided into 

two groups (stopping and passing behavior). Fig. 10 

shows a simulation result when the preceding vehicle 

stops before the intersection. Here, the predicted 

result of the preceding vehicle is illustrated at intervals 

of 5 sec. For the actual control, the predicted result 

of passing behavior, which is not shown in Fig. 10, 
Fig. 4　 Vehicle behavior with different coasting timing

Fig. 5　Control framework implemented in actual test vehicle

Fig. 6　I mage of “unnecessary acceleration 
suppression function”

Fig. 7　 Coefficient α with respect to stopping 
behavior appearance probability

5.   Validation
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is also used. Based on the predicted speed sequences 

of the preceding vehicle and the stopping behavior 

appearance probability, the ego vehicle executes 

coasting from t = 16 sec to 20 sec. After that, thanks 

to the unnecessary acceleration suppression function, 

the ego vehicle speed is maintained with a lower 

value in order not to increase the energy loss due 

to deceleration until t = 32 sec. Besides, before the 

preceding vehicle starts deceleration, the ego vehicle 

executes coasting again from t = 32 sec to t = 37 sec. 

Consequently, fuel economy is improved mainly due 

to the reduced driving energy. Fig. 11 shows another 

simulation result when the preceding vehicle passes 

through the intersection. Because the stopping 

behavior appearance probability is not low (50%) at 

t = 15 sec, the ego vehicle executes coasting. After 

that, as with the case of Fig. 10, the unnecessary 

acceleration suppression and the coasting function 

maintain the ego vehicle speed until about t = 30 sec. 

However, afterward, due to the low stopping behavior 

appearance probability and the predicted vehicle speed 

without both huge acceleration and deceleration, 

the ego vehicle starts following the preceding vehicle 

again. In both cases shown in Fig. 10 and Fig. 11, the 

THW during cruising is controlled in or around the 

ideal condition.

Fig. 12 shows the simulation result of the amount 

of fuel economy improvement when the preceding 

vehicle stops before the intersection. The number of 

simulation samples is 17. In some cases, fuel economy 

is improved by more than 20%, where the preceding 

vehicle does not drive efficiently or the ego vehicle can 

execute coasting for a long time with an appropriate 

vehicular gap. Although performance varies depending 

on the situation, fuel economy is improved in all cases. 

In terms of the average value illustrated with a dotted 

line, a 9.7% fuel economy improvement is achieved. 

On the other hand, Fig. 13 shows the comparison 

result between THW distributions with and without 

the prediction information when the preceding 

vehicle passes through the intersection. The dotted 

lines indicate the edge of the ideal condition. The 

number of simulation samples is seven. The condition 

sandwiched between two edges is the ideal condition. 

Although the THW distribution of the control with 

the prediction technology is shifted to the right side 

(i.e. larger THW), every case still exists within the 

ideal THW range, which indicates that the driving 

feeling is acceptable.

This control strategy is implemented in the actual 

test vehicle as shown in Fig. 14. Although the 

computational cost of the prediction part based on 

Fig. 10　 Time chart of vehicle simulation result 
(preceding vehicle: stop)

Fig. 8　Driving route

Fig. 9　Actual driving data for verification

IRL is low enough to be executed in an ECU installed 

in an actual vehicle, it is necessary to have a large 

memory to store the trained information. Therefore, 

in this time, the function predicting the preceding 

vehicle behavior and calculating the optimal coasting 

timing is implemented with MatlabⓇ in the PC. For 

the mass production phase, it is a future issue. The 

other part including the rule-based control is installed 

into the AutoBox Ⓡ . The control strategy is validated 

with the same condition as simulation (i.e. following 

the preceding vehicle before an intersection), where 

the driving feeling is even better than the conventional 

ACC due to lower deceleration. Although the average 

operation period (110 msec) is longer than that based 

on general MPC, safety is guaranteed by the rule-

based control running in 16 msec.

Fig. 13　 Histogram of THW average value (preceding 
vehicle: pass)

Fig. 11　 Time chart of vehicle simulation result 
(preceding vehicle: pass)

Fig. 12　 Histogram of fuel economy improvement 
value (preceding vehicle: stop)

Fig. 14　Test environment implemented in actual test vehicle
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In this work, a novel vehicle speed control strategy 

was developed to achieve both fuel economy 

improvement and the following function by using the 

prediction information with uncertainty. To realize it, 

a prediction technology based on IRL was introduced 

to predict the preceding vehicle behavior. Besides, the 

optimal coasting timing was determined by solving an 

optimization problem with the prediction information. 

Fuel economy improvement by the developed control 

strategy was validated with simulation, showing a 9.7% 

improvement under the condition that the ego vehicle 

followed the preceding vehicle before an intersection. 

This control strategy was implemented in an actual 

test vehicle to validate real-time operation. 

Future issues are as follows:

•  Evaluating fuel economy improvement in the real 

world

•  Improving the prediction technology by utilizing 

other machine learning methods or adding 

various inputs derived from cameras/sensors and 

communication devices.
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