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Black-box optimization is a method to optimize 

complex and expensive intractable functions, as well as 

functions without derivatives or explicit forms. Such 

functions appear in many problems in various fields 

such as material informatics1), machine learning2), 

and robotics3). A systematic way to perform black-
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box optimization is Bayesian optimization4). In this 

method, data points are randomly chosen to generate 

a training dataset for inferring the black-box objective 

function. A regression model is then constructed to 

predict a relation between the input variables and the 

black-box objective function in the training dataset. 

Once the regression model is trained, an acquisition 

function is set up on its basis, which selects the next 

data point in a solution space from the trained model. 

The optimal solution of the acquisition function is 

used to evaluate the black-box objective function and 

to obtain a new data point of it. When this value is 

evaluated, the regression model is retrained with new 

data. These steps are performed iteratively to pursue 

desired solutions, namely, the optimal point of the 

black-box objective function.

Bayesian optimization is applied mostly to black-

box objective functions with continuous variables, 

because the optimization of the acquisition function 

is relatively straightforward. It may be applied to 

black-box objective functions with discrete variables 

as well. A significant bottleneck appears in problems 

with discrete variables, where the resultant acquisition 

functions also contain discrete variables. It is 

generally problematic to solve acquisition functions 

with discrete variables. Optimization problems 

with discrete variables often belong to the NP-hard 

class. It takes an extremely long time to solve them 

using any algorithms. In a previous study, Bayesian 

optimization of combinatorial structures (BOCS)5) 

was proposed as a promising algorithm to evaluate the 

global minimum of black-box functions. In particular, 

a sparse prior was employed to efficiently perform 

regression in the Bayesian inference. The acquisition 

function was assumed as a quadratic unconstrained 

binary optimization (QUBO). Notably, relaxation 

to semidefinite programming (SDP) was used in the 

optimization phase, which can attain approximate 

solutions in a reasonable amount of time.

Recently, D-Wave Systems has developed a device6) 

that physically implements quantum annealing (QA)7). 

It is a metaheuristic to obtain the ground state of 

Ising spin glasses belonging to QUBO problems, and 

this device is now available commercially. Because 

various combinatorial optimization problems can 

be formulated as Ising models8), this D-Wave device 

has been used in the real world to solve a multitude 

of practical problems9)–11). The device uses niobium 

rings as quantum bits (qubits) with programmable 

local fields and mutual inductance of two qubits, so 

that the device can solve QUBO problems. Solving 

a QUBO problem is equivalent to finding a ground 

state of an Ising spin glass, because binary variables 

can be rewritten as spin variables. The first stage of 

QA is initialized in the trivial ground state of the 

driver Hamiltonian. The quantum effect involved in 

the driver Hamiltonian is gradually turned off and 

then ends so that only the classical Hamiltonian with 

a nontrivial ground state remains. One of the standard 

choices of the driver Hamiltonian consists only of the 

x element of the Pauli matrices called the transverse 

field. When the transverse field changes sufficiently 

slowly, the quantum adiabatic theorem ensures 

that we can find the nontrivial ground state at the 

end of QA12)–14). Numerous studies15)16) have shown 

that QA outperforms simulated annealing (SA)17), 

which utilizes the thermal fluctuation and solves the 

combinatorial optimization problems. In the context 

of machine learning, in which various optimization 

problems are solved during training, QA leads to a 

different type of value in the output solution known 

as the generalization performance, as shown in the 

literatures18)–20).

A previous study by Kitai et al. on black-box 

optimization using the D-Wave device has used 

the factorization machine21), which is used for 

recommendation systems and can be formulated in 

QUBO. They focused on the metamaterial design, 
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and evaluated the figure-of-merit in their metamaterial 

simulation. In this study, we test the D-Wave quantum 

annealer in the black-box optimization using BOCS. 

In particular, the D-Wave quantum annealer does 

not necessarily output the ground state at the end 

of the procedure, partly because the connectivity 

realized in D-Wave 2000Q is a sparse structure called 

a Chimera graph. To embed a desired graph expressing 

the structure of the problem on the Chimera graph, 

redundant qubits with chain structures are used to 

enhance the connectivity. This is because a single 

qubit possesses only six connections on average. We 

use a heuristic tool called minorminer22) to embed the 

complete graph into the Chimera graph. Since qubits 

in the same chain must have the same up or down 

direction of their magnetic moments, interactions 

between the qubits are inferred as ferromagnetic 

interactions. However, qubits in the same chain often 

do not have aligned magnetic moments, and this 

makes the solution undetermined. We resolve these 

broken chains by a majority vote of the directions. 

This is one of the reasons why the performance of 

QA in D-Wave 2000Q is unreliable. To achieve 

better performance of QA in D-Wave 2000Q, 

various techniques were proposed previously23)–25). 

In addition, several techniques that avoid many 

interactions between variables were proposed26)27) 

.The performance of the D-wave quantum annealer is 

affected by the freezing effect, which appears because 

of a lack of sufficient quantum fluctuations for driving 

binary variables at the last stage of QA28). In addition, 

the thermal effect affects the dynamics of the spin 

variables as well as quantum fluctuation nontrivially29). 

Thus, the output is generally deviated from the ground 

state, especially for the hard optimization problems. 

Therefore, several protocols employ a non-adiabatic 

counterpart beyond the standard protocol of QA30)–33), 

with the thermal effect34).

In BOCS, the fully connected Ising model is set as the 

acquisition function. In general, the model includes 

a hard optimization problem. Thus, the resulting 

solution from the D-Wave quantum annealer is not 

necessarily the ground state. The deviation from the 

ground state is expected to affect the performance of 

BOCS. We investigate the effect from the quantum 

device, while comparing the performance of BOCS 

when optimizing the acquisition function by SA. It 

is worth noting that SA does not always yield the 

ground state of the acquisition function depending 

on the schedule of decreasing a control parameter, 

i.e., temperature, although, in the protocol of QA, we 

also tune the transverse field to control the quantum 

fluctuation. Therefore, the comparison roughly 

demonstrates the difference between thermal and 

quantum fluctuations. In this study, we mainly focus 

on the performance of BOCS depending on the solver 

in the optimization phase of the acquisition function. 

We compare the results of BOCS by SDP, which 

leads to an approximate minimizer of the acquisition 

function and previously proposed in the original paper 

on BOCS5) as a solver in the optimization phase, with 

those by SA and QA. Also in the literature on BOCS, 

the performance employing SA in the optimization 

phase was investigated. It was not necessarily hard to 

solve the black-box objective functions, which were 

random spin systems including the Sherrington–

Kirkpatrick (SK) model with decaying interactions in 

distance measured in indices of spin variables, which 

is essentially onedimensional Ising spin glass with 

long-range interactions. In the original paper, the 

superiority of BOCS by SDP compared with that by 

SA was reported. However, it is insufficient to discuss 

the performance of BOCS by solving the problems 

that appeared in the previous study. In this paper, we 

change the problem setting into a harder one, a sparse 

SK model as the black-box objective function. In this 

sense, the setting is completely different from that in 

the original study. In addition, we utilize the D-Wave 
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quantum annealer to perform the optimization in 

BOCS, not only by SA in a classical computer because 

this is also a candidate of the solvers employed in 

BOCS.

In the procedure of BOCS, we have no information 

on the interaction strengths of the black-box objective 

function. In BOCS, we iteratively find low-energy 

state of the acquisition function as a candidate of the 

optimal solution of the black-box objective function, 

while the coefficients in the acquisition function are 

changed.

To investigate the performance of BOCS from a 

different perspective, we consider the case when the 

form of the black-box objective function is known. 

Then we may perform regression to infer only the 

coefficients to reveal the objective function. The 

inferred coefficients lead to a good approximation of 

the black-box objective function. Then, we optimize 

the resulting approximate function and attain the 

good estimator of the minimizer of the objective 

function. In previous studies, the regression method 

was proposed only from pairs of spin configuration 

and the corresponding energy value35)36). The method 

works particularly well for Ising spin glass with sparse 

interactions. An analytical study using a sophisticated 

replica method and a numerical verification revealed 

a relationship between the number of the zero-

value coefficients and the number of data needed to 

reconstruct all the coefficients. If the interaction matrix 

is sparse, fewer data are needed than the number of 

coefficients. In BOCS, similarly to this regression 

method, we utilize the sparse prior distribution to 

infer the coefficients of the surrogate model, but 

the form of the objective function is unknown. In 

this study, we set the SK model as the black-box 

objective function. We assume that the surrogate 

model takes the same form as that of the black-box 

objective function. In other words, in this case, we 

know the form of the black-box objective function. 

The comparison of BOCS with the regression and 

optimization clarifies the performance to infer the 

sparse interactions of the black-box objective function. 

We measure the efficiency of BOCS for the sparse SK 

model in terms of the necessary number of data, which 

corresponds to the number of iterations in BOCS, to 

find the optimal solution of the black-box objective 

function. In the previous study, although BOCS was 

proposed as the black-box optimization technique 

for sparse interactions in the objective function, the 

performance of BOCS depending on the sparseness 

remained unclear. To solve this problem, we change 

the sparseness of the SK models and focus on the 

necessary number of data before finding the ground 

state by investigating the success rates in finding a 

minimum.

The remainder of this paper is organized as follows. 

We explain the BOCS method in Sect. 2, we discuss 

the numerical experiments in Sect. 3, we compare the 

performances between BOCS and regression with a 

sparse prior in Sect. 4, and summarize in Sect. 5.

We assume that the input x→ is a vector of binary 

variables, its ith element is denoted by xi , and N is 

the dimension of x→. Each x→ provides an observation 

y containing a finite error σ. Our goal is to find 

x→ that minimizes a black-box function. Since we 

cannot determine an explicit form of the black-box 

function, we employ a surrogate model and train it 

using the values of the black-box objective function. 

Any objective function on the N-dimensional binary 

variables can be expressed by using up to the N-th 

polynomial of x→, although this polynomial requires 

O(2N) data to fix all the parameters. This huge amount 

of data cannot be collected in practical situations. We 

may thus cut the polynomials in finite orders. When 

the surrogate model contains higher-order terms than 

2.  Method



19

quadratic ones, we do not optimize it efficiently in 

general. In addition, the approximate surrogate model 

up to the secondorder terms can be solved by SDP or 

by using the D-Wave quantum annealer efficiently in 

the optimization phase. We thus set a quadratic model 

as the surrogate model:

(1)

where α0 is a real value, and Qα is an upper triangular 

matrix.

In this algorithm, we compute a posterior distribution 

for the model parameters by following the framework 

of Bayesian inference. By sampling from the posterior 

distribution, we construct an acquisition function that 

indicates the next data point to choose from a solution 

space. We find the minimum of this acquisition 

function by using some optimization solvers. Then, we 

obtain the new data from the black-box function with 

the x→ value. This minimizes the acquisition function. 

We retrain the model with data, including the new 

value from the black-box objective function. This 

algorithm iteratively searches for the global minimum 

by updating the data points. Fig. 1 shows a schematic 

of the BOCS algorithm.

2.1  Construction of the acquisition function
We assume that a few data points are attained, because 

the evaluation of objective functions is expensive. We 

then consider the sparse Bayesian linear regression 

to take uncertainties of the regression parameters α→ = 

[αo,Qα11,Qα22,...,Qα12,Qα13,...]and observation noise σ. 

From observations of several data points ｛x→(i),yi｝i = 1, 2..., 

we compute a posterior distribution over α→ as

(2)

where we construct a matrix X from the vector x→(i) as

X
→(i)

=[1, x1
(i), x2

(i),..., x1
(i)x2

(i), x2
(i) xx3

(i),...]. In addition, p =

1 + N + N(N-1)/2 and D represents the number of 

data points. Then, we set a likelihood function and a 

prior distribution over the parameter α→. The likelihood 

function is given by a Gaussian distribution with a 

variance σ2 as

(3)

Since the number of elements of α→ is O(N2), the 

number of data also needs O(N2) to estimate the 

regression parameters. Otherwise, we will obtain high-

variance estimators. To avoid obtaining uncertain 

parameters even when the data are scarce or the input 

dimension is large, we set a prior distribution. We here 

use a horseshoe distribution as the prior distribution 

to omit the hyperparameters to perform BOCS. This 

prior distribution is capable of efficiently inferring 

sparse parameters in the model even if the number of 

Fig. 1　 Schematic of BOCS algorithm. (a) Evaluation of a black-box function (dashed line) at four data points (open 
circles), and training a surrogate model with the four data points. The grey lines show surrogate models 
with regression parameters sampled 1000 times. (b) Construction of an acquisition function (solid line) 
by sampling a regression parameter from the posterior distribution. An open star represents the optimal 
solution of the acquisition function. (c) Evaluation of the black-box function at the new data point (open 
pentagon). (d) Retraining the surrogate model by using the five data points (open circles and open pentagon). 
(e) Trained surrogate model with 16 data points (open circles).
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data is small:37)

(4)

where  C +(0 ,1 )  i s  the  s t andard  ha l f -Cauchy 

distribution. This formulation, however, cannot realize 

efficient sampling. Following the method developed by 

Makalic and Schmidt38), the half-Cauchy distribution 

can be expressed with the inverse-Gamma distribution 

to introduce auxiliary parameters. The inverse-

Gamma distribution is a conjugate prior for normal 

distribution. The modified formulation is a closed 

form from which we can efficiently sample parameters 

from this distribution with complexity O(p3). We use 

a faster algorithm39) [O(D2p)] that is exactly the same 

as that in the formulation with auxiliary parameters.

As tested in the previous study, one may compute 

α→MLE by using a maximum likelihood estimation5). 

Then BOCS with α→MLE showed purely exploitative 

behavior and failed to evaluate the optimal solution. 

In this study, we set coefficients Qα by sampling from 

the posterior distribution P(α→|X,y→), so that the BOCS 

algorithm shows exploring behavior in the solution 

space. This is inspired by Thompson sampling in the 

context of bandit problems, which often shows better 

performance of the surrogate model attained by the 

maximum likelihood estimation.

Notice that the horseshoe prior efficiently estimates 

the sparse parameters in the surrogate model. Thus, 

the above formulation of BOCS exhibits better 

performance in the case that the black-box objective 

function is inherently the sparse interactions when we 

write its explicit form in a quadratic form. Similarly, 

as a prior distribution, we may use the Laplace 

distribution, which is typically chosen for estimating 

the sparse parameters. Owing to the existence of 

the hyperparameter in the Laplace distribution, a 

fair performance comparison between the Laplace 

distribution and the horseshoe distribution is generally 

difficult. The result from the Laplace distribution 

can be changed by tuning the hyperparameter and 

may become closer to the result from the horseshoe 

distribution. The superiority of the sparse prior can be 

expected from the sharpness of the shape of the prior 

distribution. From this aspect, the horseshoe prior 

has a good property to infer the sparse parameters 

compared with the Laplace distribution.

2.2  Optimization solver
Once Qα is fixed, we optimize the acquisition function 

(1) to select the new evaluation point. The main 

contributor of this study is the D-Wave 2000Q 

quantum annealer that solves discrete quadratic 

problems as well as SA and SDP.

Note that it can solve only 64-variable problems 

on a complete graph owing to the sparsity of the 

hardware graph on the quantum processing unit in 

the D-Wave quantum annealer. The current quantum 

annealer (D-Wave advantage) has 5000+ qubits and it 

implements 180 variables on a complete graph.

Although the solvable size of the D-Wave quantum 

annealer is  l imited, the natural computation 

performed in the D-Wave quantum annealer following 

the protocol of QA outputs a near-optimal solution in 

a relatively short time of about 20µs. In this sense, we 

may expect that the D-Wave quantum annealer can be 

a fast solver of QUBO. In general, it takes a relatively 

long time to solve the exact solution of QUBO as in 

the explanation of SDP.

We explain the three solvers used in this study: SA, 

SDP, and QA by D-Wave 2000Q.

Simulated annealing SA is a metaheuristic utilizing 

thermal f luctuations in computation. A spin 

configuration corresponding to binary variables 

starts from a random state in a solution space, and 

one spin in the configuration is flipped following 

the Metropolis–Hastings algorithm40). The energy 

difference between the initial state and the one-spin 
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flipped state is denoted by ΔE. If ΔE < 0, the state is 

updated to the flipped one; otherwise, it is updated 

with a probability e-ΔE/T. The parameter T is diminished 

in every iteration. When T is large, SA updates the 

spin configuration regardless of ΔE, and the system 

moves in a wide range in the solution space. When T 

becomes smaller, it magnifies the energy landscape and 

falls into the local minimum, because the state will 

not update without small ΔE > 0 values. SA can thus 

be trapped into a local minimum in general. When 

the speed to control the temperature is very slow, SA 

can attain the ground state of the system, namely, the 

optimal solution. Practically, a relatively quick sweep 

of the temperature can lead to the optimal solution in 

most cases. 

Semidefinite programming We briefly describe the 

application of SDP in solving discrete optimization 

problems. We consider the following quadratic 

constrained problem in general as follows.

(5)

Here, yiyj can be regarded as the (i,j)-element of the 

Gram matrix, whose eigenvalues are non-negative. 

This problem can thus be transformed to a SDP as

(6)

Here, X ≥ 0 denotes that X is a semidefinite matrix, 

which has non-negative eigenvalues. The resultant 

minimization problem is a convex optimization 

problem. Thus, we readily attain the optimal solution. 

The minimum value of this convex optimization 

problem is the same as that of the original one. We use 

the property of SDP to attain an approximate solution 

of our acquisition function. The optimization of the 

acquisition function is as follows:

(7）
We then replace each binary variable xi with σi = 2xi -1, 

and the minimization problem can then be written as

(8）

We relax the binary variable σi  to a vector yi on the 

N+1-dimensional unit sphere. We can then rewrite 

Eq. (8) as Eq. (5) with d = 0, Dijk = δijδik , b
→
 = 1

→
, and 

k = N+1. We instead solve the resultant SDP as a 

relaxation problem to generate the approximate 

solution. We binarize the attained approximate 

solution using an adequate binarization technique 

as described in a previous study5). In general, it takes 

an exhaustive time to solve the original optimization 

problem with binary variables. However, in BOCS, 

we must iteratively optimize the acquisition function. 

We should thus employ approximate techniques for 

performing BOCS in a reasonable amount of time.

D-Wave 2000Q quantum annealer D-Wave 2000Q 

is a commercial quantum annealer from D-Wave 

Systems, which physically implements the Ising model 

with the transverse field. By mapping combinatorial 

optimization problems into the two-body Ising model, 

we can find near-optimal solutions based on QA in 

a few microseconds. In particular, at the end of QA 

in the D-Wave quantuannealer, the weak quantum 

fluctuations by the transverse field cannot drive the 

spins.

This is known as the freezing phenomenon28). Thus, 

the spin configuration often deviates from the ground 

state.

In addition, the connectivity realized in D-Wave 

2000Q is a sparse structure called a Chimera graph. 

We use a heuristic tool called minorminer22) to 
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embed the complete graph into the Chimera graph. 

Redundant qubits are formed into chain structures 

to realize a larger graph connectivity. Although the 

magnetic moments of redundant qubits in a chain 

structure should take the same direction, they often 

take different directions. To obtain a solution with 

these redundant qubits, the direction is adopted 

by a majority vote. This is also the reason why the 

performance of QA in the D-Wave 2000Q worsens 

on dense graph problems. Another postprocess to 

find a better solution by fixing the broken chain is 

minimizing energy. This technique often finds a lower 

energy state than the results after a majority vote. In 

this study, we choose the majority vote to perform 

the benchmark without any further improvements 

from the default setting of using the D-Wave 2000Q. 

Although there are a few reasons that diminish the 

output from the D-Wave 2000Q differing from the 

ground state, it can often yield the ground state in 

various types of optimization problems described in 

QUBO with a small number of variables.

We perform numerical experiments employing the 

SK model as a black-box objective function. The SK 

model belongs to the NP-hard problem depending on 

the parameters described by spins σ→ ∈ { -1,1}N and 

interactions Jij:

(9)

The interaction coefficients are randomly selected as

(10)

The standard definition of the SK model is that the 

coefficient 1/N should be 1/ N. However, we introduce 

a parameter to control sparseness ρ ∈ (0,1] and set the 

coefficient as 1/N. If the parameter ρ is close to zero, 

the number of zero elements in the Jij matrix increases. 

3.  Numerical Experiment

BOCS is expected to work well because it implements 

the sparse prior. The performance of BOCS should be 

discussed in two ways. The first is inference. The value 

of ρ affects the performance of inference in BOCS. 

This is independent of the optimization solvers. The 

other way is in optimization. The sparse connectivity 

of the Ising spin glass set in the black-box objective 

function affects the performance of optimization 

solvers. In this study, we use SDP to quickly generate 

the approximate solution of the acquisition function. 

SA and QA on the D-Wave quantum annealer do not 

always reach the ground state but directly solve the 

acquisition function. Notice that we perform iterations 

in SA in fixed steps during the optimization phase. 

In addition, QA on the D-Wave quantum annealer 

performs only in a fixed amount of time.

In this study, we treat SK models with N = 20 spins 

and 10 initial datasets {x→(i),y(i)}i=1,...,10. The parameter ρ 

varies from 0.1 to 1.0 in increments of 0.1, and we 

investigate its dependence on performance. For every 

ρ value, we generate 50 instances and compute each 

problem for 10 runs.

Fig. 2 shows the residual energy after t BOCS 

iteration steps at ρ = 0.1 (a), 0.5 (b), and 1.0 (c). The 

residual energy is calculated by subtracting the global 

minimum through brute-force computation (Eglob) 

from the minimum value in the obtained data (Emin). 

The curves indicate the mean values of all trials, and 

the shaded areas indicate the standard deviation. 

Each curve and hatch type refer to solvers used in the 

optimization phase: the solid, dashed, and dashed-

dotted curves show results from D-Wave 2000Q, 

SA, and SDP, respectively. In addition, the dotted 

curve shows the result of random search (RS), which 

randomly chooses a data point at each iteration step. 

The performance of BOCS with any optimization 

solver is superior to that of RS. In our SK models, 

there is no significant difference between using SA 

and D-Wave 2000Q, whereas BOCS with SDP does 
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not efficiently decrease the resulting energy. This is in 

contrast to the previous result in the original paper on 

BOCS5).

The D-Wave 2000Q generates a low-energy state 

at the end of the protocol. The low-energy state is 

governed by the Gibbs–Boltzmann distribution 

with a finite value of the transverse field. In a sense, 

the resultant spin configuration is affected by the 

quantum fluctuation. Furthermore, SA in a finite 

number of steps remains in thermal fluctuation in its 

resultant solutions. Therefore, the comparison between 

the results obtained by SA and D-Wave focuses on 

the difference between the thermal and quantum 

fluctuations. However, we did not find a significant 

difference between the thermal and quantum 

fluctuations in our experimental setup.

We hereafter focus on the comparison between the 

results by SDP and SA. The difference between the 

two cases is mainly the deviation from the tentative 

ground state of the acquisition function. We simply 

assume that BOCS by SDP falls into a local minimum 

in the acquisition function at each step, which explains 

why the performance of BOCS by SDP becomes 

worse. In BOCS, the balance between exploration and 

exploitation of the Bayesian inference is important. 

As we introduce the sampling technique in BOCS 

Fig. 2　 (Color online) Subtraction of the global minimum (Eglob) from the minimum value in the dataset (Emin) at 
ρ= 0.1 (a), ρ= 0.5 (b), and ρ= 1.0 (c). Each curve represents the average of all trials, and each hatch stands 
for corresponding standard deviations. The solid, dashed, and dash-dotted curves respectively indicate the 
results of BOCS with D-Wave 2000Q, SA, and SDP.

for increasing the exploratory property inspired by 

the Thompson sampling, BOCS by SDP sometimes 

approaches the optimal solution. However, SA (and 

D-Wave) outperforms SDP in our problem setting, 

owing to the better performance to attain the low-

energy state by SA (and D-Wave) of the acquisition 

function. In our problem setting, we employ the 

sparse SK model. Thus the acquisition function also 

takes the similar spin glass problem during the process 

of BOCS. This is one of the reasons why SDP shows 

worse performance than SA (and D-Wave).

The difference between SDP and SA (and D-Wave) 

becomes small as the ρ value increases. This implies 

that the exploratory space becomes narrower as ρ 

takes higher values. In other words, the solution 

space is divided into the states around many deep 

local minima; thus, the exploratory space cannot 

be sufficiently broadened even by using thermal or 

quantum fluctuations. The difficulty in solving the 

hard problems appears in the performance in BOCS.

To investigate the dependence of the performance of 

BOCS on ρ, we plot a success probability of finding 

the global minimum in Fig. 3. Regardless of the 

optimization solvers used, the number of iteration 

steps before finding the minimum value increases with 

increasing ρ. The number of iteration steps consists 
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of the number of data points used in BOCS and the 

number of duplications. Moreover, we replace the 

number of iteration steps with the number of data 

points as shown in Fig. 4. Then, we find the same 

dependence on ρ as that in Fig. 3.

If the form of the black-box objective function is 

known a priori whereas its coefficients in the quadratic 

form and some parameters are unknown, one may 

infer only the coefficients from the regression data 

attained. This means that once the required number of 

data points is collected at random, one can reconstruct 

the coefficients, and the minimum solution can be 

obtained with an appropriate optimization solver. To 

Fig. 3　 (Color online) Success rate of finding the global minimum as a function of ρ and the iteration step when SA 
(a), SDP (b), or D-Wave 2000Q (c) is used.

Fig. 4　 (Color online) Success rate of finding the global minimum as a function of ρ and the number of data points 
divided by the number of coefficients when SA (a), SDP (b), or D-Wave 2000Q (c) is used. The solid curve 
shows the results of the replica analysis. The dashed line shows where the success rate is 50% when BOCS 
is used. The lower curve shows a better performance for a given ρ . The performances of SA and D-Wave 
2000Q are insensitive to the value of ρ compared with the results of the previous study35).

4.  Comparison with Regression

reconstruct the coefficients, we solve the following 

equation:

(11)

where J∼ is the coefficient vector, its element is Jij, 

S is the spin-data matrix, the ith spin data vector is

denoted by S(i) = [σ1
(i)σ2

(i),...,σ (i)
N-1σN

(i)], S ∈ {0,1}D×N(N-1)/2,

and E is the energy-data vector. Here,E(i) is equal 

to the energy of a spin configuration S(i). In the 

l i terature35),  the replica method revealed the 

relationship between ρ and the required number of 

data points that can reconstruct Jij. The analysis was 

validated by numerical experiments. To compare the 

performance of BOCS and the previous results35), we 

convert the iteration steps in Fig. 3 into the number 

of obtained data points. BOCS performs a random 
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search at the beginning, because its surrogate model 

has coefficients with large uncertainties, and the 

acquisition function varies markedly at each step. 

When the data are collected partially, the acquisition 

function moderately changes. Therefore, new data may 

not always be obtained at each step, and previously 

obtained data may be selected instead. The number of 

iteration steps is not equivalent to the number of data 

points. Fig. 4 shows the success rate as a function of 

ρ where the number of data points is divided by the 

number of Jij parameters. The heat map indicates the 

success rate for obtaining the minimum value. The 

dashed line indicates a border where the success rate 

is 50% when using BOCS. The solid white curve 

is the previous results in the literature35). The area 

above this line indicates that the number of obtained 

data points is sufficiently large to reconstruct Jij by 

regression. The other area indicates the number of 

data points that cannot reconstruct Jij; thus, this solid 

curve can be regarded as a phase transition line. Since 

the results given by the previous study are typical 

reconstruction limits35), in the case where N → ∞, 

the success and the failure areas are clearly separated. 

However, our numerical experiments of BOCS are 

for finite-number tests. Therefore, the borders of the 

success area are rather ambiguous. If SA (and D-Wave) 

is used for the optimization solver in a complicated 

problem, BOCS is more likely to find the minimum 

value with a relatively small number of data points. 

Under certain situations, BOCS occasionally yields 

better performance than the typical reconstruction 

limit that was revealed in the previous study.35) We 

propose a few reasons that explain this observation. 

The first is that BOCS only focuses on finding the 

ground state. The regression does not directly derive 

the ground state. A typical reconstruction limit is the 

performance of inferring the correct coefficients of 

the black-box objective function. Once we find the 

correct coefficients, we can obtain the exact ground 

state of the black-box objective function. One might 

find the ground state from approximate values of 

the coefficients when the number of data points is 

insufficient. However, below the typical reconstruction 

limit, a marked change in the coefficients appears 

compared with the correct coefficients, because the 

system undergoes phase transition. Therefore, we 

cannot optimistically expect that the ground state 

of the black-box objective function is attained. 

Another reason is the difference between the sparse 

priors. In the previous study, the L1 norm was used 

for inference of the sparse coefficients35). In addition, 

the hyperparameter for the Laplace distribution was, 

in some sense, optimized in their analysis. However, 

BOCS utilizes the horseshoe distribution, which may 

infer the sparse coefficients more efficiently.

Notice that the results seem to be beyond the 

theoretical reconstruction limit as ρ > D/M. This 

would be a finite-size effect. We are not arguing that 

our results suggest any advantage of BOCS beyond the 

theoretical reconstruction limit in the region where 

ρ takes a relatively large value. That being said, the 

possibility remains that BOCS, by making use of the 

horseshoe prior, reaches the theoretical reconstruction 

limit. We will be investigating this further in a future 

study.

Black-box optimization aims at reducing the value 

of objective functions that are expensive to evaluate, 

and it has broad applications in various fields such 

as machine learning and robotics. In this study, we 

tested BOCS by setting the SK model as a black-box 

objective function and evaluated its minimum value. 

In the optimization phase of BOCS, we proposed 

using the D-Wave 2000Q quantum annealer, which 

is expected to return near-optimal solutions in 

constant time, regardless of its problem size up to 

5.  Summary and Future Directions
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the limit of the capacity to embed the problem. In 

particular, the D-Wave quantum annealer outputs 

the low-energy state affected by a finite strength of 

the quantum fluctuation. Similarly to the D-Wave 

quantum annealer, we use SA in a finite number of 

steps. The comparison between SA and the D-Wave 

quantum annealer clarifies the effects of the thermal 

and quantum fluctuations in BOCS. BOCS iteratively 

evaluates the tentative acquisition function. Thus, 

we expected that both thermal and quantum effects 

were present in the results of BOCS. Despite our 

hypothesis, we did not find a significant difference 

between the thermal and quantum fluctuations when 

using BOCS. In addition, we also employed SDP in 

the optimization phase of BOCS. The results obtained 

by SA (and D-Wave) showed better performance than 

those obtained using SDP in the SK model. This 

is possibly due to the degree of deviation from the 

ground state of the tentative acquisition function.

We also compare the number of required data 

points to find the minimum value of the black-box 

objective function by BOCS and regression with the 

L1 norm. Although BOCS needs more data points 

than regression to obtain the minimum value in 

most of the cases, there is a possibility of finding the 

minimum value with a smaller number of data points 

than in the case of regression with the L1 norm, when 

the black-box has a dense structure. Although the 

L1 norm is used to perform regression to infer the 

sparse parameters, we employed the horseshoe prior 

in BOCS. This is possibly explained by the difference 

between the priors used and will be investigated 

in a future study. We emphasize that our problem 

setting is slightly different from that in regression 

under the assumption of the form of the black-

box objective function. We search for the minimum 

without knowledge of the details of the structure of 

the cost function. In addition, our results suggest 

that our approach can find only the minimum more 

efficiently than in the case of regression with the L1 

norm finding the parameters to express the objective 

function. In this study, we set the SK model as the 

black-box objective function, which is of the same 

form as the acquisition function. In other words, the 

black-box objective function can be expressed by the 

acquisition function in principle. The performance of 

BOCS has not been sufficiently investigated when the 

black-box objective function is not of the same form 

as the acquisition function. We will also investigate 

this further. In addition, note that, although we here 

choose the SK model as the benchmark test, the 

application of BOCS is not restricted to the objective 

function with two-body interactions. Beyond two-

body interactions, BOCS is applicable in principle. 

The performance of BOCS diminished by mismatch 

between the objective function and the surrogate 

model will be the next scope along the same line as 

this study.

One of the reasons to employ the D-Wave quantum 

annealer as the optimization solver is the use of 

quantum fluctuations. To investigate the quantum 

fluctuations, we may use the quantum Monte Carlo 

simulations. In addition, we may investigate the 

nontrivial effect of quantum fluctuations, known 

as the non-stochastic Hamiltonian41)-45). However, 

longer times are required for each optimization. Thus, 

we consider using the approximate message-passing 

algorithm depending on the form of the acquisition 

function46). However, in this study, there is no 

significant difference between thermal and quantum 

fluctuations in finding the approximate solution of 

the acquisition function. Thus, we may employ other 

Ising solvers such as the CMOS annealer47), the Fujitsu 

Digital Annealer48), TOSHIBA simulated bifurcation 

algorithm49), and the FPGA for performing quantum 

Monte Carlo simulation efficiently50). In addition, the 

current D-Wave 2000Q performs hybrid computation 

up to 20,000 variables on a complete graph. By using 
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these solvers and employing BOCS, we compute 

more complicated optimization problems with a large 

number of variables beyond our investigations in 

study.

It appears that utilizing a distribution generated from 

D-Wave devices can improve acquisition functions in 

the BOCS algorithm, because D-Wave devices return 

nearoptimal solutions within a few microseconds. 

One of the topics for future work will be finding a 

surrogate model suited for a distribution generated 

from D-Wave devices. We conclude that no significant 

difference between thermal and quantum fluctuations 

is observed in our results. However, the sampling 

from the D-Wave quantum annealer actually generates 

the output affected by the quantum fluctuation. 

Therefore, more suitable applications of the quantum 

device in the framework of Bayesian inference should 

be considered. This is another future research problem.
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