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Robotics applications, such as autonomous driving 

(AD) and advanced driver-assistance systems (ADAS), 

require multiple perceptional tasks [5, 7, 28], for 

example, object detection and semantic segmentation. 

If these tasks are implemented as separate models, the 

system will be complex and can involve redundant 

computations between each model. Multi-task 

learning (MTL) [6, 26, 30], which shares a portion 

of the network between multiple tasks, is a possible 

solution to simplify the system and reduce the 

complexity.

In MTL, if the magnitude of task-wise gradients 

is unbalanced during training, the trained model 

could be biased toward specific tasks. Therefore, 

several methods for balancing loss function have been 

proposed [3, 12]. However, if only the balancing loss 

function is applied, each task may have adverse effects 

on the other in MTL. One possible cause of this is 
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gradient conflict, in which the inner product between 

the gradients of tasks is negative. In this case, since 

the parameter updates of each task are oriented in 

different directions, conflicting gradients sometimes 

lead to insufficient solution for each task.

Several studies [4, 16, 21, 29] have tackled this 

problem. For example, PCGrad [29] manipulated 

gradients such that the conflicting components were 

removed, and only the orthogonal components of 

each gradient were extracted and used for the update. 

Although such methods can remove gradient conflicts, 

a converged solution is no longer optimal for the 

original objective due to gradient manipulation. 

Specifically, if the conflicting components of gradients 

have a large difference in magnitude, then these 

components contain significant information. However, 

conventional methods simply discard this information 

by removing these components.

In this paper, we propose a multi-task curriculum 

learning based on gradient similarity (MCLGS), which 

mitigates the negative impact of gradient conflicts 

between tasks. MCLGS introduces a curriculum 

learning strategy [2] that removes hard samples in 

the early stage of training in multi-task learning. In 

single-task learning (STL), the difficulty of samples are 

generally determined by how hard input is to classify. 

For MTL, we redefine the difficulty by amount of 

gradient conflicts. Thus, in MCLGS, samples which 

generates gradient conflicts, are considered as hard to 

train in multi-task learning, and are downweighted in 

the early stage of training. However, these samples are 

gradually included as training progresses. Specifically, 

to validate our idea, we present a simple and somewhat 

heuristic function that determines the weights for 

each gradient given the gradient similarity and the 

training step. As shown in Fig. 1, the function is 

designed such that the conflicting (aligned) gradients 

are downweighted (more weighted) in the early stages, 

and any type of gradients is treated equally at later 

stages; that is, the weights for each gradient approach 

a fixed value. By applying these strategies, MCLGS 

mitigates the negative impact of gradient conflicts 

without gradient manipulation, and the update rule 

of MCLGS is consistent with that of naive MTL at 

the end. Thus, MCLGS retains the original objective 

toward the end of the training and helps to converge 

on a better solution than conventional methods. We 

confirmed experimentally that MCLGS outperforms 

existing MTL methods, such as MGDA [21], PCGrad 

[29], GradDrop [4], and CAGrad [16], on NYUv2 

Fig. 1　 (a) An overview of MCLGS; g ̃i and g ̃j denote the i-th and j-th task-wise gradients on a shared network among 
tasks (shown as pink blocks). In MCLGS, a pair of task-wise gradients (g ̃i , g ̃j) are weighted by the weight wt

i,j 
(shown in purple) and used to update the model parameters θ. (b) The design of the weight wt

i,j. This depends 
on the amount of gradient conflict measured by the cosine similarity between task-wise gradients and the 
training step t . It is designed such that the weight becomes higher than 1 to encourage training if the cosine 
similarity is high; otherwise, it will be lower than 1 to suppress training in the early stage of training (top 
in (b)). As learning progresses, wt

i,j will not depend on cosine similarity and will always be around 1, which is 
consistent with the naive MTL update rule (bottom in (b))



DENSO TECHNICAL REVIEW   Vol.28 2023

特
　
　
　
集

[22] and BDD100K datasets [28]. Although existing 

methods do not improve the performance from the 

baseline on the BDD100K dataset, MCLGS performs 

even better than the baseline.

As categorized in [26], existing approaches in 

MTL belong to either architectural methods or 

optimization strategy methods. An example of 

architectural methods is a self-attention mechanism 

adopted to obtain better features shared among tasks 

[17]. In MTL, a backbone, which works as a feature 

extractor, is generally shared among multiple tasks as 

shown in Fig. 1 (a). However in [8, 18, 19], task-

wise backbones were implemented individually and 

connected via connection layers for sharing features. 

For a head, such as the classifier or regressor, a 

cascaded structure was proposed to share features of 

the early stages [27, 31]. These methods manually 

introduced new connections between task-specific 

networks. To automatically find such connections 

during training, neural architecture search has also 

been utilized [10, 23]. Since MCLGS does not depend 

on a specific architecture, it can be combined with 

these methods.

In contrast ,  several  approaches focus on the 

optimization strategy of MTL. For example, a 

loss balancing scheme was proposed based on 

homoscedastic uncertainty [12] or the norm of the 

gradient [3]. Similar to MCLGS, some studies [9, 

15, 20] introduced a learning strategy inspired by the 

curriculum [2] that orders training data from easy ones 

to hard ones. For example, [9] and [15] prioritized 

tasks during training depending on the difficulty of 

the task. [20] divided tasks into strongly and weakly 

correlated groups, and applied transfer learning from 

the former to the latter. Since these methods are not 

motivated by the reduction of the gradient conflict, 

MCLGS can also be combined with them.

Several gradient manipulation methods [4, 16, 21, 

29] have been proposed to remove gradient conflicts. 

For example, PCGrad [29] removed the conflicting 

gradient components of two tasks by simply selecting 

one task and subtracting the conflicting component 

for the other task. This was repeated for random 

combinations of the tasks. Only the orthogonal 

component for the other task is used for the parameter 

update. CAGrad [16] modified gradients to be a 

Pareto-optimal point around the original objective. 

However, if we manipulate the gradients, the retained 

solution may no longer be optimal since the objective 

function will be deviated from the original one. 

Meanwhile, MCLGS retains the original objective 

toward the end of the training and helps to converge 

on a better solution than these methods.

2  Related Work

MTL aims to train a partially shared network to 

minimize the objectives of all tasks simultaneously. 

Considering that we have N tasks, then the loss 

function for MTL is given as follows:

(1)

where L(θ̃,θi) denotes the loss function of the i-th 

task, and θ̃ and θi represent the shared parameters and 

specific parameter of the i-th task, respectively (i.e., 

the so-called head, such as the classifier and regressor). 

Hence, θ:=(θ̃ θ0,...,θN-1) refers to all parameters in 

the network. Here, gi :=∇θ Li (θ̃,θi) denotes a batch 

gradient of the i-th task, and η is the learning rate. 

Thus, the update rule in MTL is as follows:

(2)

MCLGS focuses on g ̃ i∶=∇θ~ L i (θ̃ ,θi), which is a 

batch gradient of the shared parameter θ̃ . While 

conventional methods [16, 21, 29] removed gradient 

conflicts by manipulating the gradients, MCLGS 

introduces a curriculum learning strategy based 

on directional similarity into multi-task learning. 

Curriculum learning [2] is a training paradigm that 

orders training data from easy to hard, like a human 

learning strategy. By introducing this strategy, the 

learner can update parameters toward better local 

minima in the early stages and can reach a better 

solution.

To introduce this strategy in an MTL setting, MCLGS 

considers samples that produce more gradient 

conflicts as harder samples. In addition, we ignore 

these hard samples in the early stages of training 

by downweighting their gradients. In MCLGS, the 

curriculum is controlled by the weighting function f, 

and the batch gradient is weighted by wt
i,j , which is an 

output of the weighting function f. An entire process 

of MCLGS’s update rule is represented in Algorithm 

1. First, task-wise gradients of shared parameters are 

extracted. Second, a relative weight among tasks is 

calculated by the weighting function f based on the 

number of gradient conflicts between the i-th and 

j-th tasks and the training step t. More details of the 

weighting function f will be described later. We define 

the relative weight wt
i,j as follows:

(3)

Here, note that a curriculum is defined by f based 

on not only gradients but also the training step t. 

Specifically, f is designed such that the output increases 

according to the similarity in the beginning part of 

training. In the later training stages, the output will 

be independent of the similarity (i.e., the output 

approaches a fixed value). Finally, the batch gradient is 

weighted by wt
i,j, and the parameter θ is updated. The 

update rule of MCLGS is given as follows:

(4)

3.1  Weighting Function f
As formulated in [11], curriculum learning comprises 

scoring and pacing functions. The scoring function 

defines how hard the fed sample is, while the pacing 

function denotes how many hard samples are accepted 

in the current training step. These two functions also 

need to be introduced in the weighting function f. 

Additionally, following the definition of curriculum 

learning, the weighting function f should be defined as 

a monotonically increasing function. In this paper, we 

use the following function for the weighting function:

(5)

where s denotes the scoring function, and p represents 

the pacing function. Moreover, similar to [24], we use 

3  Method
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a cosine similarity given in the following equation as 

the scoring function:

(6)

The pacing function p is designed to approach 0 

according to the increasing t. For example, it could be 

a linear decay, which is given as follows:

(7)

Conversely, it could be an exponential decay, given as 

follows:

(8)

An example of the weighting function f is shown in 

Fig. 2. The angle of f will be smoother according 

to the increasing t, and finally, it will converge at 0, 

which signifies a fixed weight (wt
i,j = 1). Additionally, 

a0 and ∆a for the linear decay and ra
t for the 

exponential decay are hyperparameters, and should 

be tuned to the target model architecture or the 

target dataset appropriately. These hyperparameters 

could be one of the limitations of MCLGS, but it is 

a common problem in many MTL methods [3, 4, 

16]. Regarding how to select the hyperparameters, we 

will experimentally show the parametric sensitivity 

studies in Section 4.2.1. Additionally, since this paper 

focuses on introducing curriculum learning based on 

gradient similarity in MTL, we selected the simple and 

somewhat heuristic weighting function f. Thus, the f 

in this paper might not be best solution and finding 

better f might be future work.

We evaluated MCLGS in a common MTL setting and 

the AD/ADAS MTL setting. For the common MTL 

setting, we chose the NYUv2 [22] dataset, which 

consists of three computer vision tasks: semantic 

segmentation, depth estimation, and surface normal 

prediction. For the AD/ADAS setting, we selected 

the BDD100K [28] dataset, which contains two 

computer vision tasks: object detection and semantic 

segmentation.

4.1  Setup
4.1.1  The NYUv2 Dataset
We followed the evaluation setup in [16]. The single-

task learning (STL) baseline model is SegNet [1], as 

described in [16], and the MTL baseline model is 

SegNet with MTAN [17]. Conventional methods 

and MCLGS are applied to the MTL baseline model. 

For the conventional methods, we evaluated MGDA 

[21], PCGrad [29], GradDrop [4], and CAGrad 

[16]. Additionally, the combination of MCLGS and 

CAGrad shows the compatibility of MCLGS. For 

the training setup, we apply the SGD optimizer with 

a learning rate of 0.007, a momentum of 0.9 and a 

weight decay of 0.0001 because the adaptive learning 

Fig. 2　 An example of weighting function f on the 
BDD100K dataset. The angle of f will be 
smoother according to the increasing t, and 
finally, it will converge at 0, signifying a fixed 
weight (wt

i,j = 1). Note that linear decay (Eq. 7) 
is used for the pacing function, where a0 = 40, 
and ∆ a = 3e-4

4  Evaluation

rate on the Adam optimizer could be incompatible 

with MCLGS. The results with the Adam optimizer, 

which is used in the evaluation setup [16], is reported 

in the supplementary material. Since MGDA [21] 

and CAGrad [16] changed the balance between task 

objectives, we applied uncertainty weigh loss [12] 

for loss balancing on all methods to achieve a fair 

comparison. We trained the model three times using 

each different random seed and calculated the average 

accuracy. Similar to [16], we also used the average 

per-task performance drop ∆m. While ∆m is directly 

calculated for all metrics in [16], we first calculated 

the average per-metric performance drop in task i. 

Thus, ∆mi=   (-1)li,j(Mm,i,j-Mb,i,j)/Mb,i,j, where m and 

b represent the target method and the STL baseline, 

respectively; K denotes the number of metrics on task 

i; and li = 1 if a higher value satisfies a criterion Mi,j 

for the metric j of task i better; otherwise, li = 0. We 

calculated the average of mi for all the tasks to get ∆m. 

We used the STL baseline with the Adam optimizer as 

a baseline for ∆m calculation.

4.1.2  The BDD100K Dataset
For the STL baseline model, we used FCOS-RT [25] 

for object detection. For semantic segmentation, we 

combined ResNet50, the feature pyramid network 

(FPN) used in FCOSRT [25], and a segmentation 

head in [13]. For the MTL models, we applied an 

FCOS head and a segmentation head in [13] to 

ResNet50 and an FPN used in FCOS-RT [25], which 

were shared among tasks. For the loss function, we 

followed [25] for object detection and used the cross 

entropy and dice loss weighted by 0.5 for semantic 

segmentation.

Although the BDD100K dataset comprises two tasks, 

each dataset is separated, and labels are not annotated 

on the same image (this setting is more closer to the 

actual operation than the common MTL setting). 

Therefore, if each sample could have a ground truth 

of only one task, then the loss function for the other 

sample would be missing. A missing loss function 

of the task means that the learner studies each task 

alternatively, which may cause catastrophic forgetting 

[14] during training. To avoid this, we pre-trained 

STL models for each task and utilized their outpus 

to train MTL model as pseudo labels for each one. 

Moreover, we always fed the ground truths and pseudo 

labels to the MTL setting. Therefore, the loss function 

of this setting is formulated as follows:

(9)

where gt and pseudo represent the ground truth 

and the pseudo labels, respectively, and od and ss 

denote object detection and semantic segmentation, 

respectively. Additionally, w denotes the weights of 

loss functions for each label and task type. Here, we 

searched these weights without any MTL methods 

and used wgt = 0.8, wpseudo = 0.2, wod = 1.7 and wss = 

0.3. Note that Lgt,od and Lgt,ss could be missing, but 

Lpseudo,od and Lpseudo,od always exist. To generate the 

pseudo label, we used thresholds for the teacher model 

output. The threshold is 0.3 for object detection, 0.2 

for non-maximum suppression, and 0.8 for semantic 

segmentation.

Further details of the setup are as follows. We used the 

SGD optimizer with 0.9 momentum, 0.0001 weight 

decay, and we enabled Nestrov. The batch size was 

16, and the total epoch was 30. We used a multi-step 

learning rate schedule with 0.1 times learning decay 

at the 16-th, 22-th, 28-th epoch. The initial learning 

rate was 0.01, and we used the learning rate warmup 

with a 500 step. We reduced the gradient norm below 

10. For the evaluation metrics, we used COCO 

mAP@0.5:0.95 for object detection and mIoU for 

semantic segmentation. Similar to NYUv2, we trained 

the model three times with each different random 

seed and calculated the average accuracy. We applied 



DENSO TECHNICAL REVIEW   Vol.28 2023

特
　
　
　
集

MCLGS and conventional methods, such as MGDA 

[21], PCGrad [29], GradDrop [4], and CAGrad [16].

4.2  Results
4.2.1  Parametric Sensitivity Study
As mentioned in Section 3.1, the hyperparameters 

of the pacing function is one of the limitations in 

MCLGS. These hyperparameters could have a large 

impact regarding the performance. Thus, first, we 

performed a parametric sensitivity study for the pacing 

function. In this paper, we used linear decay (Eq. 7) 

for the pacing function. Therefore, the pacing function 

comprises two hyperparameters: a0 and ∆a. Since 

∆a should be correlated with a0, we introduced the 

following definition of ∆a:

(10)

where ttotal represents the total training steps, and rt 

denotes the decreasing ratio, which is a hyperparameter 

in this definition. For example, rt = 1 means that when 

the training is finished, the curriculum also converges 

at the fixed weight. Similarly, rt = 1/2 means that the 

curriculum converges in the middle of training.

 

Table 1 and Table 2 show the sensitivity study 

results regarding a0 and rt on the NYUv2 and 

BDD100K datasets, respectively. In both cases, the 

performance is more sensitive regarding rt than a0. 

To maximize performance, a0 and ∆a should be 

appropriate values. However, most cases with the 

curriculum outperform cases without the curriculum, 

shown as a0 = 0, rt = 1. Additionally, a0 and rt should 

have larger values than those of the NYUv2 dataset, 

meaning that the pacing function should be slow.

Table 1　 A parametric sensitivity study of the pacing 
function p for ∆m% (lower is better) on the 
NYUv2 dataset. The performance is more 
sensitive regarding rt than a0. Note that the 
format of table values is (mean ± stderr)

Table 2　 A parametric sensitivity study of the pacing function p for ∆m% (lower is better) on the BDD100K dataset. 
The performance is more sensitive regarding rt than a0. NaN represents the diverged cases due to the large 
weight of the curriculum. Note that the format of table values is (mean ± stderr)

4.2.2  Main Results
We present the results of the NYUv2 dataset in 

Table 3. MCLGS achieves the smallest average per-

task performance drop ∆m of -2.12%. If just focusing 

on single-task performance, PCGrad and MGDA [21] 

are the best for depth estimation and surface normal 

prediction, respectively. However, these methods cannot 

improve the performance of the other tasks well. This 

could be because they change the objectives by gradient 

manipulation and their retained solution is biased 

toward specific tasks. In contrast, MCLGS is consistent 

with the original objectives and achieves the better 

performance of all tasks. Furthermore, the uncertainty 

weigh loss [12] is suitable with MCLGS and improves 

the performance compared to equal weighting. 

Additionally, MCLGS with CAGrad improves the 

performance even better. We set a0 and ∆a to 60 and 

5e−4, respectively, based on the parametric sensitivity 

study. Moreover, as shown in Table 1 and Table 3, 

MCLGS with several hyperparameter settings achieves 

the better average per-task performance ∆m than 

existing methods.

We present the results of the BDD100K dataset in 

Table 4. MCLGS achieves the best accuracy in both 

object detection and semantic segmentation even 

including standard errors. Meanwhile, the accuracy 

of the conventional methods is below the naive MTL 

setting. This might be because of pseudo labels, which 

Table 3　 Multi-task learning resuluts of the NYUv2 dataset: MCLGS with uncertainty weigh loss [12] outperforms 
all the other methods. MCLGS with CAGrad improves the performance even better. For the loss weighting 
scheme, “equal” represents no loss balancing and “uncert” denotes the uncertainty weigh loss [12]. #P 
denotes the relative model size compared to the vanilla SegNet. The best average result for each method 
is marked in bold. The best average result among all multi-task methods is annotated with boxes

Table 4　 Multi-task learning results of the BDD100K dataset: MCLGS outperforms all the other methods. Following 
the evaluation format of [16], #P denotes the relative model size compared to the STL baseline. The best 
average result among all multi-task methods is marked in bold
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are less accurate than ground truth labels. Hence, 

gradients of pseudo labels could conflict with those of 

ground truth labels. Here, conventional methods, such 

as PCGrad, remove the gradient conflicts whether the 

gradient comes from the ground truth or pseudo label. 

Thus, conventional methods may update parameters 

in the wrong direction. Meanwhile, since MCLGS 

just downweights a pair of conflicted gradients, it 

may clean up samples that contain inaccurate labels 

in this setting. We set a0 and ∆a to 120 and 4.3e−4, 

respectively, based on the parametric sensitivity study. 

Moreover, as shown in Table 2 and Table 4, 

MCLGS with all hyperparameter settings achieves the 

better average per-task performance ∆m than existing 

methods.

In this paper, we proposed MCLGS, which mitigates 

the negative impact of gradient conflicts between tasks. 

MCLGS introduces a curriculum learning strategy [2] 

that utilizes only easy samples in the early stages of 

training in multi-task learning. Conventional methods 

do not update parameters in the corresponding 

direction for the original objective because they 

manipulate gradients to remove the conflicts. 

Meanwhile, MCLGS just downweights samples 

that generate gradient conflicts in the early stage of 

training, and any type of gradient is treated equally at 

later stages, which is consistent with the naive MTL 

update rule. Therefore, MCLGS retains the original 

objective toward the end of the training and helps 

to converge at a better solution than conventional 

methods. As a result, we confirmed experimentally 

that MCLGS is superior to the conventional methods 

and compatible with them, and it can reduce the 

average per-task performance drop ∆m on the NYUv2 

[22] and BDD100K datasets [28]. 
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methods, while that of MCLGS using the SGD 

optimizer is -3.71% which is better than PCGrad and 

GradDrop. Additionally, since the adaptive learning 

rate of Adam is incompatible with MCLGS, MCLGS 

is more compatible with SGD than Adam.

Additionally, we found that MGDA with uncertainty 

weigh loss performs effectively. While MGDA with 

equal weighting is biased against surface normal 

prediction, the uncertainty weigh loss improves 

the performance of semantic segmentation and 

depth estimation. This may be because MGDA 

breaks the balance of loss functions to maintain the 

Paretooptimal, while uncertainty weigh loss restores 

the balance. This is reasonable because CAGrad, which 

introduces a balance constraint of loss function into 

MGDA, also performs well.

In the main paper, we reported the experimental 

results of the NYUv2 dataset [6], where the optimizer 

is changed from Adam to SGD, because the adaptive 

learning rate in the Adam optimizer is not suitable 

with MCLGS. However, this change in the evaluation 

setup [3] could be unfair for the other existing 

methods. Thus, we also evaluated each method with 

the Adam optimizer following the setting in [3]. 

Additionally, ∆m is recalculated using the result of the 

STL baseline with the Adam optimizer.

We present the full results on the NYUv2 dataset in 

Table 1. The ∆m of MCLGS with CAGrad using 

SGD reaches -5.01% and outperforms all the other 

Supplementary Materials

A  Additional Experimental Results

Table 1　 Multi-task learning resuluts of the NYUv2 dataset: MCLGS with CAGrad outperforms all the other 
methods. MCLGS without CAGrad is better than PCGrad and GradDrop. For the loss weighting scheme, 
“equal” represents no loss balancing, and “uncert” denotes the uncertainty weigh loss [2]. #P denotes the 
relative model size compared to the vanilla SegNet. The best average result for each method is marked in 
bold. The best average result among all multi-task methods is annotated with boxes

As shown in Fig. 1, the cosine similarity between 

semantic segmentation and surface normal estimation 

is higher than that at the beginning of the NYUv2 

dataset. This means that the gradient of depth 

estimation highlights a different direction from that of 

the others. One possible reason could be that semantic 

segmentation and surface normal prediction are prone 

to using object boundary information, while depth 

estimation is not. Furthermore, the model might be 

trained to take this information initially.

To confirm that the weight wt
i,j is generated depending 

on the cosine similarity, we visualized the cosine 

similarity and the weight generated by MCLGS in 

Fig. 1 and Fig. 2. As designed, wt
i,j fluctuates a lot 

depending on the cosine similarity but converges 

around 1.0 as learning progresses because MCLGS 

includes samples generating gradient conflicts at the 

end of the training. Additionally, we observed that the 

cosine similarity also tends to converge to 0, which 

means that the direction of task-wise gradients is 

orthogonal.

B   Visualization Results of the 
Cosine Similarity and Weight

Fig. 1　 Visualization results of cosine similarity and wt
i,j 

with increasing training step t  of the NYUv2 
dataset. The weight is generated depending 
on the cosine similarity. Segmentation, depth, 
and normal represent semantic segmentation, 
depth est imat ion ,  and surface normal 
prediction, respectively. Raw values are plotted 
as points, while lines represent the exponential 
mean average (EMA) of each value

Fig. 2　 Visualization results of cosine similarity and 
wt

i,j  with increasing training step t  of the 
BDD100K dataset. The weight is generated 
depending on the cosine similarity. Raw values 
are plotted as points while lines represent the 
exponential mean average (EMA) of each value
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In the main paper, we described that gradient 

manipulation leads to non-optimal solution for the 

original objectives. In this section, we will give the 

details of gradient manipulation and the case updating 

parameters into non-optimal direction.

For example, PCGrad [7] manipulated gradients such 

that the conflicting components were removed, and 

only the orthogonal components of each gradient 

were extracted and used for the update. Gradient 

manipulation of PCGrad is formulated as follows:

(1)

where g ĩ and g ̃j denote batch gradients of the i-th and 

j-th task, respectively. Note that Eq. 1 represents the 

Fig. 3　 Examples that PCGrad [7] works well and 
not. (a) Projected average gradient g ̃ is still 
similar to the original average gradient 
g ̃ ' , while gradient conflict is removed. (b) 
Projected gradient g ̃ is far from the original 
average gradient g ̃ ' even though gradient 
conflict is removed. In this case, the conflicted 
component of the task gradient gĩ is dominant 
on the average gradient because the norm of 
g̃i is much larger than that of g̃j. However, this 
component is eliminated by PCGrad

C   The Problem of Gradient 
Manipulation

manipulation for g ̃i, but PCGrad also applied this 

manipulation for g j̃ as well. Fig. 3 shows examples of 

gradient projection by PCGrad. As shown in Fig. 3 

(a), if the magnitude of task-wise gradients is similar, 

the projected average gradient g ̃ is also similar to the 

original average gradient g ̃'. Therefore, the retained 

solution is around the original objectives in this case. 

However, as shown in Fig. 3 (b), if the magnitude 

of task-wise gradient is much different, the retained 

solution is far from the original objectives. In this case, 

although conflicted component of  g ̃i is dominant 

on the average gradient g ̃, PCGrad eliminated this 

component to remove gradient conflict.
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