
DENSO TECHNICAL REVIEW Vol.28 2023

特
　
　
　
集

Robotics applications, such as autonomous driving

(AD) and advanced driver-assistance systems (ADAS),

require multiple perceptional tasks [5, 7, 28], for

example, object detection and semantic segmentation.

If these tasks are implemented as separate models, the

system will be complex and can involve redundant

computations between each model. Multi-task

learning (MTL) [6, 26, 30], which shares a portion

of the network between multiple tasks, is a possible

solution to simplify the system and reduce the

complexity.

In MTL, if the magnitude of task-wise gradients

is unbalanced during training, the trained model

could be biased toward specific tasks. Therefore,

several methods for balancing loss function have been

proposed [3, 12]. However, if only the balancing loss

function is applied, each task may have adverse effects

on the other in MTL. One possible cause of this is

Multi-Task Curriculum Learning
Based on Gradient Similarity ＊

1 Introduction

Hiroaki IGARASHI Kenichi YONEJI Kohta ISHIKAWA

Intensive studies on multi-task learning (MTL) with deep neural networks have shown cases where both
test error and computational cost can be reduced compared to single-task learning. However, several
studies have argued that a naive implementation of MTL often degrades test performance due to gradient
conflict, in which task-wise gradients have a negative inner product. These studies also invented ways to
modify the gradients and eliminate the conflict. One concern about these methods is that the obtained
solution is no longer optimal for the original objective due to the modification. In this paper, we propose
a multi-task curriculum learning based on gradient similarity (MCLGS) to mitigate the negative impact of
gradient conflicts while retaining the original objective toward the end of the training. We adopt a simple
curriculum strategy that gives more weight to mini-batches exhibiting fewer gradient conflicts in the early
stage of training. We experimentally confirmed that MCLGS outperforms existing MTL methods, such as
MGDA, PCGrad, GradDrop, and CAGrad, on BDD100K and NYUv2 datasets.

 Key words :
Machine Learning, Deep Neural Networks, Multi-task Learning

Rei KAWAKAMI

＊ Proceedings of the British Machine Vision Conference (BMVC), 2022.

Teppei SUZUKI Shingo YASHIMA
Ikuro SATO

gradient conflict, in which the inner product between

the gradients of tasks is negative. In this case, since

the parameter updates of each task are oriented in

different directions, conflicting gradients sometimes

lead to insufficient solution for each task.

Several studies [4, 16, 21, 29] have tackled this

problem. For example, PCGrad [29] manipulated

gradients such that the conflicting components were

removed, and only the orthogonal components of

each gradient were extracted and used for the update.

Although such methods can remove gradient conflicts,

a converged solution is no longer optimal for the

original objective due to gradient manipulation.

Specifically, if the conflicting components of gradients

have a large difference in magnitude, then these

components contain significant information. However,

conventional methods simply discard this information

by removing these components.

In this paper, we propose a multi-task curriculum

learning based on gradient similarity (MCLGS), which

mitigates the negative impact of gradient conflicts

between tasks. MCLGS introduces a curriculum

learning strategy [2] that removes hard samples in

the early stage of training in multi-task learning. In

single-task learning (STL), the difficulty of samples are

generally determined by how hard input is to classify.

For MTL, we redefine the difficulty by amount of

gradient conflicts. Thus, in MCLGS, samples which

generates gradient conflicts, are considered as hard to

train in multi-task learning, and are downweighted in

the early stage of training. However, these samples are

gradually included as training progresses. Specifically,

to validate our idea, we present a simple and somewhat

heuristic function that determines the weights for

each gradient given the gradient similarity and the

training step. As shown in Fig. 1, the function is

designed such that the conflicting (aligned) gradients

are downweighted (more weighted) in the early stages,

and any type of gradients is treated equally at later

stages; that is, the weights for each gradient approach

a fixed value. By applying these strategies, MCLGS

mitigates the negative impact of gradient conflicts

without gradient manipulation, and the update rule

of MCLGS is consistent with that of naive MTL at

the end. Thus, MCLGS retains the original objective

toward the end of the training and helps to converge

on a better solution than conventional methods. We

confirmed experimentally that MCLGS outperforms

existing MTL methods, such as MGDA [21], PCGrad

[29], GradDrop [4], and CAGrad [16], on NYUv2

Fig. 1　 (a) An overview of MCLGS; g ̃i and g ̃j denote the i-th and j-th task-wise gradients on a shared network among
tasks (shown as pink blocks). In MCLGS, a pair of task-wise gradients (g ̃i , g ̃j) are weighted by the weight wt

i,j
(shown in purple) and used to update the model parameters θ. (b) The design of the weight wt

i,j. This depends
on the amount of gradient conflict measured by the cosine similarity between task-wise gradients and the
training step t . It is designed such that the weight becomes higher than 1 to encourage training if the cosine
similarity is high; otherwise, it will be lower than 1 to suppress training in the early stage of training (top
in (b)). As learning progresses, wt

i,j will not depend on cosine similarity and will always be around 1, which is
consistent with the naive MTL update rule (bottom in (b))

DENSO TECHNICAL REVIEW Vol.28 2023

特
　
　
　
集

[22] and BDD100K datasets [28]. Although existing

methods do not improve the performance from the

baseline on the BDD100K dataset, MCLGS performs

even better than the baseline.

As categorized in [26], existing approaches in

MTL belong to either architectural methods or

optimization strategy methods. An example of

architectural methods is a self-attention mechanism

adopted to obtain better features shared among tasks

[17]. In MTL, a backbone, which works as a feature

extractor, is generally shared among multiple tasks as

shown in Fig. 1 (a). However in [8, 18, 19], task-

wise backbones were implemented individually and

connected via connection layers for sharing features.

For a head, such as the classifier or regressor, a

cascaded structure was proposed to share features of

the early stages [27, 31]. These methods manually

introduced new connections between task-specific

networks. To automatically find such connections

during training, neural architecture search has also

been utilized [10, 23]. Since MCLGS does not depend

on a specific architecture, it can be combined with

these methods.

In contrast , several approaches focus on the

optimization strategy of MTL. For example, a

loss balancing scheme was proposed based on

homoscedastic uncertainty [12] or the norm of the

gradient [3]. Similar to MCLGS, some studies [9,

15, 20] introduced a learning strategy inspired by the

curriculum [2] that orders training data from easy ones

to hard ones. For example, [9] and [15] prioritized

tasks during training depending on the difficulty of

the task. [20] divided tasks into strongly and weakly

correlated groups, and applied transfer learning from

the former to the latter. Since these methods are not

motivated by the reduction of the gradient conflict,

MCLGS can also be combined with them.

Several gradient manipulation methods [4, 16, 21,

29] have been proposed to remove gradient conflicts.

For example, PCGrad [29] removed the conflicting

gradient components of two tasks by simply selecting

one task and subtracting the conflicting component

for the other task. This was repeated for random

combinations of the tasks. Only the orthogonal

component for the other task is used for the parameter

update. CAGrad [16] modified gradients to be a

Pareto-optimal point around the original objective.

However, if we manipulate the gradients, the retained

solution may no longer be optimal since the objective

function will be deviated from the original one.

Meanwhile, MCLGS retains the original objective

toward the end of the training and helps to converge

on a better solution than these methods.

2 Related Work

MTL aims to train a partially shared network to

minimize the objectives of all tasks simultaneously.

Considering that we have N tasks, then the loss

function for MTL is given as follows:

(1)

where L(θ̃,θi) denotes the loss function of the i-th

task, and θ̃ and θi represent the shared parameters and

specific parameter of the i-th task, respectively (i.e.,

the so-called head, such as the classifier and regressor).

Hence, θ:=(θ̃ θ0,...,θN-1) refers to all parameters in

the network. Here, gi :=∇θ Li (θ̃,θi) denotes a batch

gradient of the i-th task, and η is the learning rate.

Thus, the update rule in MTL is as follows:

(2)

MCLGS focuses on g ̃ i∶=∇θ~ L i (θ̃ ,θi), which is a

batch gradient of the shared parameter θ̃ . While

conventional methods [16, 21, 29] removed gradient

conflicts by manipulating the gradients, MCLGS

introduces a curriculum learning strategy based

on directional similarity into multi-task learning.

Curriculum learning [2] is a training paradigm that

orders training data from easy to hard, like a human

learning strategy. By introducing this strategy, the

learner can update parameters toward better local

minima in the early stages and can reach a better

solution.

To introduce this strategy in an MTL setting, MCLGS

considers samples that produce more gradient

conflicts as harder samples. In addition, we ignore

these hard samples in the early stages of training

by downweighting their gradients. In MCLGS, the

curriculum is controlled by the weighting function f,

and the batch gradient is weighted by wt
i,j , which is an

output of the weighting function f. An entire process

of MCLGS’s update rule is represented in Algorithm

1. First, task-wise gradients of shared parameters are

extracted. Second, a relative weight among tasks is

calculated by the weighting function f based on the

number of gradient conflicts between the i-th and

j-th tasks and the training step t. More details of the

weighting function f will be described later. We define

the relative weight wt
i,j as follows:

(3)

Here, note that a curriculum is defined by f based

on not only gradients but also the training step t.

Specifically, f is designed such that the output increases

according to the similarity in the beginning part of

training. In the later training stages, the output will

be independent of the similarity (i.e., the output

approaches a fixed value). Finally, the batch gradient is

weighted by wt
i,j, and the parameter θ is updated. The

update rule of MCLGS is given as follows:

(4)

3.1 Weighting Function f
As formulated in [11], curriculum learning comprises

scoring and pacing functions. The scoring function

defines how hard the fed sample is, while the pacing

function denotes how many hard samples are accepted

in the current training step. These two functions also

need to be introduced in the weighting function f.

Additionally, following the definition of curriculum

learning, the weighting function f should be defined as

a monotonically increasing function. In this paper, we

use the following function for the weighting function:

(5)

where s denotes the scoring function, and p represents

the pacing function. Moreover, similar to [24], we use

3 Method

DENSO TECHNICAL REVIEW Vol.28 2023

特
　
　
　
集

a cosine similarity given in the following equation as

the scoring function:

(6)

The pacing function p is designed to approach 0

according to the increasing t. For example, it could be

a linear decay, which is given as follows:

(7)

Conversely, it could be an exponential decay, given as

follows:

(8)

An example of the weighting function f is shown in

Fig. 2. The angle of f will be smoother according

to the increasing t, and finally, it will converge at 0,

which signifies a fixed weight (wt
i,j = 1). Additionally,

a0 and ∆a for the linear decay and ra
t for the

exponential decay are hyperparameters, and should

be tuned to the target model architecture or the

target dataset appropriately. These hyperparameters

could be one of the limitations of MCLGS, but it is

a common problem in many MTL methods [3, 4,

16]. Regarding how to select the hyperparameters, we

will experimentally show the parametric sensitivity

studies in Section 4.2.1. Additionally, since this paper

focuses on introducing curriculum learning based on

gradient similarity in MTL, we selected the simple and

somewhat heuristic weighting function f. Thus, the f

in this paper might not be best solution and finding

better f might be future work.

We evaluated MCLGS in a common MTL setting and

the AD/ADAS MTL setting. For the common MTL

setting, we chose the NYUv2 [22] dataset, which

consists of three computer vision tasks: semantic

segmentation, depth estimation, and surface normal

prediction. For the AD/ADAS setting, we selected

the BDD100K [28] dataset, which contains two

computer vision tasks: object detection and semantic

segmentation.

4.1 Setup
4.1.1 The NYUv2 Dataset
We followed the evaluation setup in [16]. The single-

task learning (STL) baseline model is SegNet [1], as

described in [16], and the MTL baseline model is

SegNet with MTAN [17]. Conventional methods

and MCLGS are applied to the MTL baseline model.

For the conventional methods, we evaluated MGDA

[21], PCGrad [29], GradDrop [4], and CAGrad

[16]. Additionally, the combination of MCLGS and

CAGrad shows the compatibility of MCLGS. For

the training setup, we apply the SGD optimizer with

a learning rate of 0.007, a momentum of 0.9 and a

weight decay of 0.0001 because the adaptive learning

Fig. 2　 An example of weighting function f on the
BDD100K dataset. The angle of f will be
smoother according to the increasing t, and
finally, it will converge at 0, signifying a fixed
weight (wt

i,j = 1). Note that linear decay (Eq. 7)
is used for the pacing function, where a0 = 40,
and ∆ a = 3e-4

4 Evaluation

rate on the Adam optimizer could be incompatible

with MCLGS. The results with the Adam optimizer,

which is used in the evaluation setup [16], is reported

in the supplementary material. Since MGDA [21]

and CAGrad [16] changed the balance between task

objectives, we applied uncertainty weigh loss [12]

for loss balancing on all methods to achieve a fair

comparison. We trained the model three times using

each different random seed and calculated the average

accuracy. Similar to [16], we also used the average

per-task performance drop ∆m. While ∆m is directly

calculated for all metrics in [16], we first calculated

the average per-metric performance drop in task i.

Thus, ∆mi= (-1)li,j(Mm,i,j-Mb,i,j)/Mb,i,j, where m and

b represent the target method and the STL baseline,

respectively; K denotes the number of metrics on task

i; and li = 1 if a higher value satisfies a criterion Mi,j

for the metric j of task i better; otherwise, li = 0. We

calculated the average of mi for all the tasks to get ∆m.

We used the STL baseline with the Adam optimizer as

a baseline for ∆m calculation.

4.1.2 The BDD100K Dataset
For the STL baseline model, we used FCOS-RT [25]

for object detection. For semantic segmentation, we

combined ResNet50, the feature pyramid network

(FPN) used in FCOSRT [25], and a segmentation

head in [13]. For the MTL models, we applied an

FCOS head and a segmentation head in [13] to

ResNet50 and an FPN used in FCOS-RT [25], which

were shared among tasks. For the loss function, we

followed [25] for object detection and used the cross

entropy and dice loss weighted by 0.5 for semantic

segmentation.

Although the BDD100K dataset comprises two tasks,

each dataset is separated, and labels are not annotated

on the same image (this setting is more closer to the

actual operation than the common MTL setting).

Therefore, if each sample could have a ground truth

of only one task, then the loss function for the other

sample would be missing. A missing loss function

of the task means that the learner studies each task

alternatively, which may cause catastrophic forgetting

[14] during training. To avoid this, we pre-trained

STL models for each task and utilized their outpus

to train MTL model as pseudo labels for each one.

Moreover, we always fed the ground truths and pseudo

labels to the MTL setting. Therefore, the loss function

of this setting is formulated as follows:

(9)

where gt and pseudo represent the ground truth

and the pseudo labels, respectively, and od and ss

denote object detection and semantic segmentation,

respectively. Additionally, w denotes the weights of

loss functions for each label and task type. Here, we

searched these weights without any MTL methods

and used wgt = 0.8, wpseudo = 0.2, wod = 1.7 and wss =

0.3. Note that Lgt,od and Lgt,ss could be missing, but

Lpseudo,od and Lpseudo,od always exist. To generate the

pseudo label, we used thresholds for the teacher model

output. The threshold is 0.3 for object detection, 0.2

for non-maximum suppression, and 0.8 for semantic

segmentation.

Further details of the setup are as follows. We used the

SGD optimizer with 0.9 momentum, 0.0001 weight

decay, and we enabled Nestrov. The batch size was

16, and the total epoch was 30. We used a multi-step

learning rate schedule with 0.1 times learning decay

at the 16-th, 22-th, 28-th epoch. The initial learning

rate was 0.01, and we used the learning rate warmup

with a 500 step. We reduced the gradient norm below

10. For the evaluation metrics, we used COCO

mAP@0.5:0.95 for object detection and mIoU for

semantic segmentation. Similar to NYUv2, we trained

the model three times with each different random

seed and calculated the average accuracy. We applied

DENSO TECHNICAL REVIEW Vol.28 2023

特
　
　
　
集

MCLGS and conventional methods, such as MGDA

[21], PCGrad [29], GradDrop [4], and CAGrad [16].

4.2 Results
4.2.1 Parametric Sensitivity Study
As mentioned in Section 3.1, the hyperparameters

of the pacing function is one of the limitations in

MCLGS. These hyperparameters could have a large

impact regarding the performance. Thus, first, we

performed a parametric sensitivity study for the pacing

function. In this paper, we used linear decay (Eq. 7)

for the pacing function. Therefore, the pacing function

comprises two hyperparameters: a0 and ∆a. Since

∆a should be correlated with a0, we introduced the

following definition of ∆a:

(10)

where ttotal represents the total training steps, and rt

denotes the decreasing ratio, which is a hyperparameter

in this definition. For example, rt = 1 means that when

the training is finished, the curriculum also converges

at the fixed weight. Similarly, rt = 1/2 means that the

curriculum converges in the middle of training.

Table 1 and Table 2 show the sensitivity study

results regarding a0 and rt on the NYUv2 and

BDD100K datasets, respectively. In both cases, the

performance is more sensitive regarding rt than a0.

To maximize performance, a0 and ∆a should be

appropriate values. However, most cases with the

curriculum outperform cases without the curriculum,

shown as a0 = 0, rt = 1. Additionally, a0 and rt should

have larger values than those of the NYUv2 dataset,

meaning that the pacing function should be slow.

Table 1　 A parametric sensitivity study of the pacing
function p for ∆m% (lower is better) on the
NYUv2 dataset. The performance is more
sensitive regarding rt than a0. Note that the
format of table values is (mean ± stderr)

Table 2　 A parametric sensitivity study of the pacing function p for ∆m% (lower is better) on the BDD100K dataset.
The performance is more sensitive regarding rt than a0. NaN represents the diverged cases due to the large
weight of the curriculum. Note that the format of table values is (mean ± stderr)

4.2.2 Main Results
We present the results of the NYUv2 dataset in

Table 3. MCLGS achieves the smallest average per-

task performance drop ∆m of -2.12%. If just focusing

on single-task performance, PCGrad and MGDA [21]

are the best for depth estimation and surface normal

prediction, respectively. However, these methods cannot

improve the performance of the other tasks well. This

could be because they change the objectives by gradient

manipulation and their retained solution is biased

toward specific tasks. In contrast, MCLGS is consistent

with the original objectives and achieves the better

performance of all tasks. Furthermore, the uncertainty

weigh loss [12] is suitable with MCLGS and improves

the performance compared to equal weighting.

Additionally, MCLGS with CAGrad improves the

performance even better. We set a0 and ∆a to 60 and

5e−4, respectively, based on the parametric sensitivity

study. Moreover, as shown in Table 1 and Table 3,

MCLGS with several hyperparameter settings achieves

the better average per-task performance ∆m than

existing methods.

We present the results of the BDD100K dataset in

Table 4. MCLGS achieves the best accuracy in both

object detection and semantic segmentation even

including standard errors. Meanwhile, the accuracy

of the conventional methods is below the naive MTL

setting. This might be because of pseudo labels, which

Table 3　 Multi-task learning resuluts of the NYUv2 dataset: MCLGS with uncertainty weigh loss [12] outperforms
all the other methods. MCLGS with CAGrad improves the performance even better. For the loss weighting
scheme, “equal” represents no loss balancing and “uncert” denotes the uncertainty weigh loss [12]. #P
denotes the relative model size compared to the vanilla SegNet. The best average result for each method
is marked in bold. The best average result among all multi-task methods is annotated with boxes

Table 4　 Multi-task learning results of the BDD100K dataset: MCLGS outperforms all the other methods. Following
the evaluation format of [16], #P denotes the relative model size compared to the STL baseline. The best
average result among all multi-task methods is marked in bold

DENSO TECHNICAL REVIEW Vol.28 2023

特
　
　
　
集

are less accurate than ground truth labels. Hence,

gradients of pseudo labels could conflict with those of

ground truth labels. Here, conventional methods, such

as PCGrad, remove the gradient conflicts whether the

gradient comes from the ground truth or pseudo label.

Thus, conventional methods may update parameters

in the wrong direction. Meanwhile, since MCLGS

just downweights a pair of conflicted gradients, it

may clean up samples that contain inaccurate labels

in this setting. We set a0 and ∆a to 120 and 4.3e−4,

respectively, based on the parametric sensitivity study.

Moreover, as shown in Table 2 and Table 4,

MCLGS with all hyperparameter settings achieves the

better average per-task performance ∆m than existing

methods.

In this paper, we proposed MCLGS, which mitigates

the negative impact of gradient conflicts between tasks.

MCLGS introduces a curriculum learning strategy [2]

that utilizes only easy samples in the early stages of

training in multi-task learning. Conventional methods

do not update parameters in the corresponding

direction for the original objective because they

manipulate gradients to remove the conflicts.

Meanwhile, MCLGS just downweights samples

that generate gradient conflicts in the early stage of

training, and any type of gradient is treated equally at

later stages, which is consistent with the naive MTL

update rule. Therefore, MCLGS retains the original

objective toward the end of the training and helps

to converge at a better solution than conventional

methods. As a result, we confirmed experimentally

that MCLGS is superior to the conventional methods

and compatible with them, and it can reduce the

average per-task performance drop ∆m on the NYUv2

[22] and BDD100K datasets [28].

References
[1]　 Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture for
image segmentation. IEEE transactions on pattern analysis and

machine intelligence, 39(12):2481–2495, 2017.
[2]　 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and

Jason Weston. Curriculum learning. In Proceedings of the 26th

annual international conference on machine learning, pages
41–48, 2009.

[3]　 Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew
Rabinovich. Gradnorm: Gradient normalization for adaptive
loss balancing in deep multitask networks. In International

Conference on Machine Learning, pages 794–803. PMLR,
2018.

[4]　 Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong,
Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov.
Just pick a sign: Optimizing deep multitask models with
gradient sign dropout. Advances in Neural Information

Processing Systems, 33: 2039–2050, 2020.
[5]　 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In Proceedings of the

IEEE conference on computer vision and pattern recognition,
pages 3213–3223, 2016.

[6]　 Michael Crawshaw. Multi-task learning with deep neural
networks: A survey. arXiv preprint arXiv:2009.09796, 2020.

[7]　 Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz
Hertlein, Claudius Glaeser, Fabian Timm, Werner Wiesbeck,
and Klaus Dietmayer. Deep multi-modal object detection and
semantic segmentation for autonomous driving: Datasets,
methods, and challenges. IEEE Transactions on Intelligent

Transportation Systems, 22(3):1341–1360, 2020.
[8]　 Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L

Yuille. Nddr-cnn: Layerwise feature fusing in multi-task
cnns by neural discriminative dimensionality reduction. In
Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 3205–3214, 2019.
[9]　 Michelle Guo, Albert Haque, De-An Huang, Serena Yeung,

and Li Fei-Fei. Dynamic task prioritization for multitask
learning. In Proceedings of the European conference on computer

vision (ECCV), pages 270–287, 2018.
[10]　 Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht.

Learning to branch for multi-task learning. In International

Conference on Machine Learning, pages 3854–3863. PMLR,
2020.

[11]　 Guy Hacohen and Daphna Weinshall. On the power
of curriculum learning in training deep networks. In

International Conference on Machine Learning, pages 2535–
2544. PMLR, 2019.

[12]　 Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geometry

5 Conclusion

and semantics. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 7482–7491,
2018.

[13]　 Alexander Kirillov, Kaiming He, Ross Girshick, and Piotr
Dollár. A unified architecture for instance and semantic
segmentation. http://presentations. cocodataset.org/
COCO17-Stuff-FAIR.pdf, 2017.

[14]　 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,
John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–
3526, 2017.

[15]　 Changsheng Li, Junchi Yan, Fan Wei, Weishan Dong,
Qingshan Liu, and Hongyuan Zha. Self-paced multi-
task learning. In Thirty-First AAAI Conference on Artificial

Intelligence, 2017.
[16]　 Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang

Liu. Conflict-averse gradient descent for multi-task learning.
Advances in Neural Information Processing Systems, 34, 2021.

[17]　 Shikun Liu, Edward Johns, and Andrew J Davison. End-
to-end multi-task learning with attention. In Proceedings

of the IEEE/CVF conference on computer vision and pattern

recognition, pages 1871–1880, 2019.
[18]　 Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and

Martial Hebert. Cross-stitch networks for multi-task
learning. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3994–4003, 2016.
[19]　 Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and

Anders Søgaard. Latent multi-task architecture learning. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 4822–4829, 2019.

[20]　 Niko laos Sara f i anos , Theodore Giannakopoulos ,
Christophoros Nikou, and Ioannis A Kakadiaris. Curriculum
learning for multi-task classification of visual attributes. In
Proceedings of the IEEE International Conference on Computer

Vision Workshops, pages 2608–2615, 2017.
[21]　 Ozan Sener and Vladlen Koltun. Multi-task learning as

multi-objective optimization. Advances in neural information

processing systems, 31, 2018.
[22]　 Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob

Fergus. Indoor segmentation and support inference from
rgbd images. In European conference on computer vision, pages
746–760. Springer, 2012.

[23]　 Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate
Saenko. Adashare: Learning what to share for efficient deep
multi-task learning. Advances in Neural Information Processing

Systems, 33:8728–8740, 2020.
[24]　 Mihai Suteu and Yike Guo. Regularizing deep multi-

task networks using orthogonal gradients. arXiv preprint

arXiv:1912.06844, 2019.
[25]　 Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:

A simple and strong anchorfree object detector. IEEE

Transactions on Pattern Analysis and Machine Intelligence,
2020.

[26]　 Simon Vandenhende, Stamatios Georgoulis, Wouter Van
Gansbeke, Marc Proesmans, Dengxin Dai, and Luc Van
Gool. Multi-task learning for dense prediction tasks: A
survey. IEEE transactions on pattern analysis and machine

intelligence, 2021.
[27]　 Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe.

Pad-net: Multi-tasks guided prediction-and-distillation
network for simultaneous depth estimation and scene
parsing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 675–684, 2018.
[28]　 Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying

Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Darrell.
Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 2636–2645,
2020.

[29]　 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelskea Finn. Gradient surgery for
multi-task learning. Advances in Neural Information Processing

Systems, 33:5824–5836, 2020.
[30]　 Yu Zhang and Qiang Yang. A survey on multi-task learning.

IEEE Transactions on Knowledge and Data Engineering, 2021.
[31]　 Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, Nicu

Sebe, and Jian Yang. Patternaffinitive propagation across
depth, surface normal and semantic segmentation. In
Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 4106–4115, 2019.

DENSO TECHNICAL REVIEW Vol.28 2023

特
　
　
　
集

methods, while that of MCLGS using the SGD

optimizer is -3.71% which is better than PCGrad and

GradDrop. Additionally, since the adaptive learning

rate of Adam is incompatible with MCLGS, MCLGS

is more compatible with SGD than Adam.

Additionally, we found that MGDA with uncertainty

weigh loss performs effectively. While MGDA with

equal weighting is biased against surface normal

prediction, the uncertainty weigh loss improves

the performance of semantic segmentation and

depth estimation. This may be because MGDA

breaks the balance of loss functions to maintain the

Paretooptimal, while uncertainty weigh loss restores

the balance. This is reasonable because CAGrad, which

introduces a balance constraint of loss function into

MGDA, also performs well.

In the main paper, we reported the experimental

results of the NYUv2 dataset [6], where the optimizer

is changed from Adam to SGD, because the adaptive

learning rate in the Adam optimizer is not suitable

with MCLGS. However, this change in the evaluation

setup [3] could be unfair for the other existing

methods. Thus, we also evaluated each method with

the Adam optimizer following the setting in [3].

Additionally, ∆m is recalculated using the result of the

STL baseline with the Adam optimizer.

We present the full results on the NYUv2 dataset in

Table 1. The ∆m of MCLGS with CAGrad using

SGD reaches -5.01% and outperforms all the other

Supplementary Materials

A Additional Experimental Results

Table 1　 Multi-task learning resuluts of the NYUv2 dataset: MCLGS with CAGrad outperforms all the other
methods. MCLGS without CAGrad is better than PCGrad and GradDrop. For the loss weighting scheme,
“equal” represents no loss balancing, and “uncert” denotes the uncertainty weigh loss [2]. #P denotes the
relative model size compared to the vanilla SegNet. The best average result for each method is marked in
bold. The best average result among all multi-task methods is annotated with boxes

As shown in Fig. 1, the cosine similarity between

semantic segmentation and surface normal estimation

is higher than that at the beginning of the NYUv2

dataset. This means that the gradient of depth

estimation highlights a different direction from that of

the others. One possible reason could be that semantic

segmentation and surface normal prediction are prone

to using object boundary information, while depth

estimation is not. Furthermore, the model might be

trained to take this information initially.

To confirm that the weight wt
i,j is generated depending

on the cosine similarity, we visualized the cosine

similarity and the weight generated by MCLGS in

Fig. 1 and Fig. 2. As designed, wt
i,j fluctuates a lot

depending on the cosine similarity but converges

around 1.0 as learning progresses because MCLGS

includes samples generating gradient conflicts at the

end of the training. Additionally, we observed that the

cosine similarity also tends to converge to 0, which

means that the direction of task-wise gradients is

orthogonal.

B Visualization Results of the
Cosine Similarity and Weight

Fig. 1　 Visualization results of cosine similarity and wt
i,j

with increasing training step t of the NYUv2
dataset. The weight is generated depending
on the cosine similarity. Segmentation, depth,
and normal represent semantic segmentation,
depth est imat ion , and surface normal
prediction, respectively. Raw values are plotted
as points, while lines represent the exponential
mean average (EMA) of each value

Fig. 2　 Visualization results of cosine similarity and
wt

i,j with increasing training step t of the
BDD100K dataset. The weight is generated
depending on the cosine similarity. Raw values
are plotted as points while lines represent the
exponential mean average (EMA) of each value

DENSO TECHNICAL REVIEW Vol.28 2023

特
　
　
　
集

In the main paper, we described that gradient

manipulation leads to non-optimal solution for the

original objectives. In this section, we will give the

details of gradient manipulation and the case updating

parameters into non-optimal direction.

For example, PCGrad [7] manipulated gradients such

that the conflicting components were removed, and

only the orthogonal components of each gradient

were extracted and used for the update. Gradient

manipulation of PCGrad is formulated as follows:

(1)

where g ĩ and g ̃j denote batch gradients of the i-th and

j-th task, respectively. Note that Eq. 1 represents the

Fig. 3　 Examples that PCGrad [7] works well and
not. (a) Projected average gradient g ̃ is still
similar to the original average gradient
g ̃ ' , while gradient conflict is removed. (b)
Projected gradient g ̃ is far from the original
average gradient g ̃ ' even though gradient
conflict is removed. In this case, the conflicted
component of the task gradient gĩ is dominant
on the average gradient because the norm of
g̃i is much larger than that of g̃j. However, this
component is eliminated by PCGrad

C The Problem of Gradient
Manipulation

manipulation for g ̃i, but PCGrad also applied this

manipulation for g j̃ as well. Fig. 3 shows examples of

gradient projection by PCGrad. As shown in Fig. 3

(a), if the magnitude of task-wise gradients is similar,

the projected average gradient g ̃ is also similar to the

original average gradient g ̃'. Therefore, the retained

solution is around the original objectives in this case.

However, as shown in Fig. 3 (b), if the magnitude

of task-wise gradient is much different, the retained

solution is far from the original objectives. In this case,

although conflicted component of g ̃i is dominant

on the average gradient g ̃, PCGrad eliminated this

component to remove gradient conflict.

References
[1]　 Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong,

Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov.
Just pick a sign: Optimizing deep multitask models with
gradient sign dropout. Advances in Neural Information

Processing Systems, 33: 2039–2050, 2020.
[2]　 Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task

learning using uncertainty to weigh losses for scene geometry
and semantics. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 7482–7491,
2018.

[3]　 Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang
Liu. Conflict-averse gradient descent for multi-task learning.
Advances in Neural Information Processing Systems, 34, 2021.

[4]　 Shikun Liu, Edward Johns, and Andrew J Davison. End-to-
end multi-task learning with attention. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition,
pages 1871–1880, 2019.

[5]　 Ozan Sener and Vladlen Koltun. Multi-task learning as
multi-objective optimization. Advances in neural information

processing systems, 31, 2018.
[6]　 Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob

Fergus. Indoor segmentation and support inference from
rgbd images. In European conference on computer vision, pages
746–760. Springer, 2012.

[7]　 Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for
multi-task learning. Advances in Neural Information Processing

Systems, 33:5824–5836, 2020.

五 十 嵐 博 昭
いがらし ひろあき

AI 研究部
画像認識技術の研究開発に従事

石 川 康 太
いしかわ こうた

デンソーアイティーラボラトリ
機械学習，信号処理の研究開発に従事

著者

米 司 健 一
よねじ けんいち

AI 研究部
画像認識関連の要素技術開発に従事

川 上 玲
かわかみ れい

東京工業大学工学院システム制御系准教
授　博士（情報理工学）
コンピュータビジョン，画像処理の研究に
従事

鈴 木 哲 平
すずき てっぺい

デンソーアイティーラボラトリ　博士（工学）
コンピュータビジョン，機械学習に関する研
究開発に従事

八 嶋 晋 吾
やしま しんご

デンソーアイティーラボラトリ　研究開発
グループ
モデル圧縮・画像認識の要素技術開発に従事

佐 藤 育 郎
さとう いくろう

デンソーアイティーラボラトリ　博士（理学）
機械学習関連の研究開発に従事

